Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"Cornell University" +contributor:("Cao, Xiaodong"). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Hou, Qi. Rough Hypoellipticity for Local Weak Solutions to the Heat Equation in Dirichlet Spaces.

Degree: PhD, Mathematics, 2019, Cornell University

 This thesis studies some qualitative properties of local weak solutions of the heat equation in Dirichlet spaces. Let  ≤ ft(X,𝓔,𝓕)) be a Dirichlet space where X… (more)

Subjects/Keywords: Dirichlet space; heat equation; heat kernel; heat semigroup; local weak solution; Mathematics

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hou, Q. (2019). Rough Hypoellipticity for Local Weak Solutions to the Heat Equation in Dirichlet Spaces. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/67578

Chicago Manual of Style (16th Edition):

Hou, Qi. “Rough Hypoellipticity for Local Weak Solutions to the Heat Equation in Dirichlet Spaces.” 2019. Doctoral Dissertation, Cornell University. Accessed September 29, 2020. http://hdl.handle.net/1813/67578.

MLA Handbook (7th Edition):

Hou, Qi. “Rough Hypoellipticity for Local Weak Solutions to the Heat Equation in Dirichlet Spaces.” 2019. Web. 29 Sep 2020.

Vancouver:

Hou Q. Rough Hypoellipticity for Local Weak Solutions to the Heat Equation in Dirichlet Spaces. [Internet] [Doctoral dissertation]. Cornell University; 2019. [cited 2020 Sep 29]. Available from: http://hdl.handle.net/1813/67578.

Council of Science Editors:

Hou Q. Rough Hypoellipticity for Local Weak Solutions to the Heat Equation in Dirichlet Spaces. [Doctoral Dissertation]. Cornell University; 2019. Available from: http://hdl.handle.net/1813/67578


Cornell University

2. Tasena, Santi. Heat Kernal Analysis On Weighted Dirichlet Spaces.

Degree: PhD, Mathematics, 2011, Cornell University

 This thesis is concerned with heat kernel estimates on weighted Dirichlet spaces. The Dirichlet forms considered here are strongly local and regular. They are defined… (more)

Subjects/Keywords: poincare inequality; doubling; remotely constant

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tasena, S. (2011). Heat Kernal Analysis On Weighted Dirichlet Spaces. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/33627

Chicago Manual of Style (16th Edition):

Tasena, Santi. “Heat Kernal Analysis On Weighted Dirichlet Spaces.” 2011. Doctoral Dissertation, Cornell University. Accessed September 29, 2020. http://hdl.handle.net/1813/33627.

MLA Handbook (7th Edition):

Tasena, Santi. “Heat Kernal Analysis On Weighted Dirichlet Spaces.” 2011. Web. 29 Sep 2020.

Vancouver:

Tasena S. Heat Kernal Analysis On Weighted Dirichlet Spaces. [Internet] [Doctoral dissertation]. Cornell University; 2011. [cited 2020 Sep 29]. Available from: http://hdl.handle.net/1813/33627.

Council of Science Editors:

Tasena S. Heat Kernal Analysis On Weighted Dirichlet Spaces. [Doctoral Dissertation]. Cornell University; 2011. Available from: http://hdl.handle.net/1813/33627


Cornell University

3. Tran, Hung. Aspects Of The Ricci Flow.

Degree: PhD, Mathematics, 2014, Cornell University

 This thesis contains several projects investigating aspects of the Ricci flow (RF), from preserved curvature conditions, Harnack estimates, long-time existence results, to gradient Ricci solitons.… (more)

Subjects/Keywords: Ricci flow; Weyl tensor; Harnack estimates

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tran, H. (2014). Aspects Of The Ricci Flow. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/37064

Chicago Manual of Style (16th Edition):

Tran, Hung. “Aspects Of The Ricci Flow.” 2014. Doctoral Dissertation, Cornell University. Accessed September 29, 2020. http://hdl.handle.net/1813/37064.

MLA Handbook (7th Edition):

Tran, Hung. “Aspects Of The Ricci Flow.” 2014. Web. 29 Sep 2020.

Vancouver:

Tran H. Aspects Of The Ricci Flow. [Internet] [Doctoral dissertation]. Cornell University; 2014. [cited 2020 Sep 29]. Available from: http://hdl.handle.net/1813/37064.

Council of Science Editors:

Tran H. Aspects Of The Ricci Flow. [Doctoral Dissertation]. Cornell University; 2014. Available from: http://hdl.handle.net/1813/37064


Cornell University

4. Bailesteanu, Mihai. The Heat Equation Under The Ricci Flow.

Degree: PhD, Mathematics, 2011, Cornell University

 This paper has two main results. The first deals with determining gradient estimates for positive solutions of the heat equation on a manifold whose metric… (more)

Subjects/Keywords: Heat equation; Ricci flow; geometric flow; gradient estimates

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bailesteanu, M. (2011). The Heat Equation Under The Ricci Flow. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/29406

Chicago Manual of Style (16th Edition):

Bailesteanu, Mihai. “The Heat Equation Under The Ricci Flow.” 2011. Doctoral Dissertation, Cornell University. Accessed September 29, 2020. http://hdl.handle.net/1813/29406.

MLA Handbook (7th Edition):

Bailesteanu, Mihai. “The Heat Equation Under The Ricci Flow.” 2011. Web. 29 Sep 2020.

Vancouver:

Bailesteanu M. The Heat Equation Under The Ricci Flow. [Internet] [Doctoral dissertation]. Cornell University; 2011. [cited 2020 Sep 29]. Available from: http://hdl.handle.net/1813/29406.

Council of Science Editors:

Bailesteanu M. The Heat Equation Under The Ricci Flow. [Doctoral Dissertation]. Cornell University; 2011. Available from: http://hdl.handle.net/1813/29406


Cornell University

5. Liu, Jingbo. HEAT KERNEL ESTIMATE OF THE SCHRODINGER OPERATOR IN UNIFORM DOMAINS.

Degree: PhD, Mathematics, 2019, Cornell University

 In this thesis we study the properties of the Schrodinger operator L=−∆+q on a Harnack-type Dirichlet space for q belonging to Kato class K or… (more)

Subjects/Keywords: Mathematics; Dirichlet; Heat Kernel Estimate; Uniform Domain

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, J. (2019). HEAT KERNEL ESTIMATE OF THE SCHRODINGER OPERATOR IN UNIFORM DOMAINS. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/67362

Chicago Manual of Style (16th Edition):

Liu, Jingbo. “HEAT KERNEL ESTIMATE OF THE SCHRODINGER OPERATOR IN UNIFORM DOMAINS.” 2019. Doctoral Dissertation, Cornell University. Accessed September 29, 2020. http://hdl.handle.net/1813/67362.

MLA Handbook (7th Edition):

Liu, Jingbo. “HEAT KERNEL ESTIMATE OF THE SCHRODINGER OPERATOR IN UNIFORM DOMAINS.” 2019. Web. 29 Sep 2020.

Vancouver:

Liu J. HEAT KERNEL ESTIMATE OF THE SCHRODINGER OPERATOR IN UNIFORM DOMAINS. [Internet] [Doctoral dissertation]. Cornell University; 2019. [cited 2020 Sep 29]. Available from: http://hdl.handle.net/1813/67362.

Council of Science Editors:

Liu J. HEAT KERNEL ESTIMATE OF THE SCHRODINGER OPERATOR IN UNIFORM DOMAINS. [Doctoral Dissertation]. Cornell University; 2019. Available from: http://hdl.handle.net/1813/67362


Cornell University

6. Qian, Lihai. RIGIDITY ON EINSTEIN MANIFOLDS AND SHRINKING RICCI SOLITONS IN HIGH DIMENSIONS.

Degree: PhD, Mathematics, 2017, Cornell University

 This thesis consists of three parts. Each part solves a geometric problem in geometric analysis using differential equations. The first part gives a rigidity result… (more)

Subjects/Keywords: Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Qian, L. (2017). RIGIDITY ON EINSTEIN MANIFOLDS AND SHRINKING RICCI SOLITONS IN HIGH DIMENSIONS. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/51609

Chicago Manual of Style (16th Edition):

Qian, Lihai. “RIGIDITY ON EINSTEIN MANIFOLDS AND SHRINKING RICCI SOLITONS IN HIGH DIMENSIONS.” 2017. Doctoral Dissertation, Cornell University. Accessed September 29, 2020. http://hdl.handle.net/1813/51609.

MLA Handbook (7th Edition):

Qian, Lihai. “RIGIDITY ON EINSTEIN MANIFOLDS AND SHRINKING RICCI SOLITONS IN HIGH DIMENSIONS.” 2017. Web. 29 Sep 2020.

Vancouver:

Qian L. RIGIDITY ON EINSTEIN MANIFOLDS AND SHRINKING RICCI SOLITONS IN HIGH DIMENSIONS. [Internet] [Doctoral dissertation]. Cornell University; 2017. [cited 2020 Sep 29]. Available from: http://hdl.handle.net/1813/51609.

Council of Science Editors:

Qian L. RIGIDITY ON EINSTEIN MANIFOLDS AND SHRINKING RICCI SOLITONS IN HIGH DIMENSIONS. [Doctoral Dissertation]. Cornell University; 2017. Available from: http://hdl.handle.net/1813/51609

.