Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:


Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Colorado State University" +contributor:("Richardson, Everett V."). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

Colorado State University

1. Yang, Tsung. Sand dispersion in a laboratory flume.

Degree: PhD, Civil Engineering, 1968, Colorado State University

This study is concerned mainly with the longitudinal dispersion of sand particles along the bed of an alluvial channel under conditions of steady, uniform flow. Attention is focused on developing a general one-dimensional stochastic model to describe and predict the longitudinal dispersion process. The method of approach used by Sayre and Conover (1967) for a two-dimensional stochastic model, which described the movement of sand particles along an alluvial bed, is adapted here for the development of a general one-dimensional stochastic model. The parameters used in this general one-dimensional stochastic model can be obtained either from longitudinal dispersion and transport data, or from bed configuration data, or from a combination of both. The statistical analysis of ripple bed configurations indicates that the distribution of bed elevation closely follows a normal distribution, and may possess the ergodic property. The Aris moment equations are used to solve the problem of sand dispersion along an alluvial bed as a special case of the problem of dispersion of suspended sand particles near the bed. The Aris moment equations used in this study are modified forms of the conservation of mass equations for the transport, deposition, and re-entrainment of suspended sediment. When appropriate initial and boundary conditions are used, there is excellent agreement between solutions of the Aris moment equation and results given by the general one—dimensional stochastic model. Fine, medium, and coarse sized radioactive sand grains were used as tracer particles in experiments at two different flow conditions, namely, ripple and dune conditions. In spite of the irregularities of the experimental longitudinal dispersion curves caused by the irregularities of the bed configurations, the mean longitudinal displacement and the variance of the longitudinal distribution of the tracer particles were found to increase linearly with time, as required by the stochastic model. The shape of the experimental longitudinal dispersion curves could also be fairly well represented by the general one-dimensional stochastic model. Advisors/Committee Members: Shen, H. W. (advisor), Simons, Daryl B. (committee member), Richardson, Everett V. (committee member), Sandborn, Virgil A. (committee member), Mielke, Paul W. (committee member).

Subjects/Keywords: Channels (Hydraulic engineering)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, T. (1968). Sand dispersion in a laboratory flume. (Doctoral Dissertation). Colorado State University. Retrieved from

Chicago Manual of Style (16th Edition):

Yang, Tsung. “Sand dispersion in a laboratory flume.” 1968. Doctoral Dissertation, Colorado State University. Accessed March 08, 2021.

MLA Handbook (7th Edition):

Yang, Tsung. “Sand dispersion in a laboratory flume.” 1968. Web. 08 Mar 2021.


Yang T. Sand dispersion in a laboratory flume. [Internet] [Doctoral dissertation]. Colorado State University; 1968. [cited 2021 Mar 08]. Available from:

Council of Science Editors:

Yang T. Sand dispersion in a laboratory flume. [Doctoral Dissertation]. Colorado State University; 1968. Available from: