Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

Dates: Last 2 Years

You searched for +publisher:"Clemson University" +contributor:("Stephen Foulger"). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Clemson University

1. Tuggle, Matthew Artus. Material Properties of Anderson Localizing Optical Fiber.

Degree: PhD, School of Materials Science and Engineering, 2020, Clemson University

Over half a century ago, the paper entitled “Absence of Diffusion in Certain Random Lattices” was published by P. Anderson and described a metal-to-insulator transition phenomenon where electron diffusion does not occur in disordered semiconductors. This phenomenon is now commonly referred to as “Anderson localization” (AL). Since the AL detailed in Anderson’s paper arose from the wave nature of electrons, similar behavior should be observed in other wave systems, more specifically in optics. Given the utility of optical fibers, extensive theoretical treatment has been conducted on transverse Anderson localization (TAL, disorder in x- and y-directions, with the z-direction remaining invariant) in such systems. Only recently has it been experimentally observed, paving the way for studies into the influence of fiber material on linear and nonlinear TAL. This Dissertation represents the first materials study of doped silicate transverse Anderson localizing optical fibers (TALOFs) and their corresponding passive and active optical properties. More specifically, Chapter I reviews microstructured and multicore optical fiber, and methods of their fabrication, in order to develop an understanding of the impact of the core microstructure on waveguide properties. Then, an overview of TALOFs is developed to provide insights into the different materials and fabrication methods used to develop the few TALOFs reported to date. The former fiber systems are well studied; therefore, this research Dissertation will be focused on the novel effects and material influences on the latter (Anderson) systems. Chapter II begins the development of these novel fibers through in situ phase separation in optical fibers drawn using the molten core method (MCM). Limitations in the resulting fibers were studied, and adaptations to the fabrication method were made to elongate the already formed microphases through development and subsequent use of a two-tier MCM. Chapter III introduces an alternative fiber fabrication technique, namely the stack-and-draw method, specifically adapted to utilize MCM-derived precursor fibers in the stack. The resulting fibers are characterized to understand the effects of processing on the core microstructure, and ultimately to understand how the core microstructure leads to TAL. Chapters IV and V investigate the material properties and potential applications of the TALOFs that resulted from the fabrication technique developed in Chapter III. Specifically, Chapter IV investigates both Yb3+ and Er3+ doped TALOFs for solid-state lasing and amplification respectively. The resulting experimental observations and present limitations of these fibers for active applications are discussed. In Chapter V, the first nonlinear optical TALOFs are explored. Even though the higher refractive index phases possessed an estimated nonlinear refractive index (n2) similar to silica, small modal effective areas were demonstrated due to the strong localization in… Advisors/Committee Members: John Ballato, Arash Mafi, Stephen Foulger, Konstantin Kornev.

Subjects/Keywords: Fiber fabrication; Glass; Microstructure; Optical fibers; Optical nonlinearities; Transverse Anderson localization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tuggle, M. A. (2020). Material Properties of Anderson Localizing Optical Fiber. (Doctoral Dissertation). Clemson University. Retrieved from https://tigerprints.clemson.edu/all_dissertations/2584

Chicago Manual of Style (16th Edition):

Tuggle, Matthew Artus. “Material Properties of Anderson Localizing Optical Fiber.” 2020. Doctoral Dissertation, Clemson University. Accessed September 20, 2020. https://tigerprints.clemson.edu/all_dissertations/2584.

MLA Handbook (7th Edition):

Tuggle, Matthew Artus. “Material Properties of Anderson Localizing Optical Fiber.” 2020. Web. 20 Sep 2020.

Vancouver:

Tuggle MA. Material Properties of Anderson Localizing Optical Fiber. [Internet] [Doctoral dissertation]. Clemson University; 2020. [cited 2020 Sep 20]. Available from: https://tigerprints.clemson.edu/all_dissertations/2584.

Council of Science Editors:

Tuggle MA. Material Properties of Anderson Localizing Optical Fiber. [Doctoral Dissertation]. Clemson University; 2020. Available from: https://tigerprints.clemson.edu/all_dissertations/2584


Clemson University

2. Hawkins, Thomas Wade. The Materials Science and Engineering of Advanced YB-Doped Glasses and Fibers for High-Power Lasers.

Degree: PhD, School of Materials Science and Engineering, 2020, Clemson University

This research studies and yields new understandings into the materials science and engineering of advanced multicomponent glass systems, which is critical for next generation fiber lasers operating at high output powers. This begins with the study and development of Yb-doped glasses in the Al2O3-P2O5-SiO2 (APS) ternary system, fabricated using modified chemical vapor deposition (MCVD), that, despite being highly doped, possess an average refractive index matched to that of silica (SiO2). The highly doped active core material was subsequently processed through a multiple stack-and-draw process to realize a single fiber with high doping, compositionally-tailored index, and scalability for fiber lasers. Based on the knowledge gained in this first focal area, further strategic compositional tailoring to influence the glass’ photoelastic and thermo-optic coefficient, was performed in order to understand and realize significant decreases in Brillouin and thermal-Rayleigh scattering, which instigate parasitic stimulated Brillouin scattering (SBS) and transverse mode instabilities (TMI) in high power fiber lasers. In addition to understanding the composition / structure / properties of these glasses, a double-clad fiber laser will be fabricated, scaled to over 1 kW of output laser power, and studied in order to relate the materials science and engineering of multiple glass systems and fibers designs to laser performance and properties. Advisors/Committee Members: Liang Dong, John Ballato, Peter Dragic, Stephen Foulger, Phil Brown.

Subjects/Keywords: fiber laser; MCVD; optical fiber

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hawkins, T. W. (2020). The Materials Science and Engineering of Advanced YB-Doped Glasses and Fibers for High-Power Lasers. (Doctoral Dissertation). Clemson University. Retrieved from https://tigerprints.clemson.edu/all_dissertations/2585

Chicago Manual of Style (16th Edition):

Hawkins, Thomas Wade. “The Materials Science and Engineering of Advanced YB-Doped Glasses and Fibers for High-Power Lasers.” 2020. Doctoral Dissertation, Clemson University. Accessed September 20, 2020. https://tigerprints.clemson.edu/all_dissertations/2585.

MLA Handbook (7th Edition):

Hawkins, Thomas Wade. “The Materials Science and Engineering of Advanced YB-Doped Glasses and Fibers for High-Power Lasers.” 2020. Web. 20 Sep 2020.

Vancouver:

Hawkins TW. The Materials Science and Engineering of Advanced YB-Doped Glasses and Fibers for High-Power Lasers. [Internet] [Doctoral dissertation]. Clemson University; 2020. [cited 2020 Sep 20]. Available from: https://tigerprints.clemson.edu/all_dissertations/2585.

Council of Science Editors:

Hawkins TW. The Materials Science and Engineering of Advanced YB-Doped Glasses and Fibers for High-Power Lasers. [Doctoral Dissertation]. Clemson University; 2020. Available from: https://tigerprints.clemson.edu/all_dissertations/2585


Clemson University

3. Vargas, Amber L. Nanoparticle Doped Optical Fibers for High Energy Lasers.

Degree: MS, School of Materials Science and Engineering, 2019, Clemson University

Fabrication of rare earth (RE) doped optical fibers for use in fiber-based lasers and amplifiers is conventionally performed using a solution doping technique where RE salts (i.e., ErCl3) are dissolved in a solvent, introduced into the porous silica soot, dried and consolidated to form the active fiber core. This process does not allow for tailoring of the chemical environment about the RE. Alternatively, nanoparticle (NP) doping is more recent approach to incorporating rare earths into an optical fiber and have been shown to permit modification of the chemical environment around the RE in ways the enhance spectroscopic performance. This is due to the NP isolating the dopant from the host SiO2 glass by creating a protective “shell” surrounding the RE. The NP host should to have a lower phonon energy than the SiO2 (1100 cm^-1) matrix since the radiative and non-radiative processes influence lasing efficiencies. In this Thesis, lanthanum trifluoride (LaF3) was selected as the NP of choice since it possesses a low phonon energy (~350 cm^-1) and while the fluoride converts to an oxide during the fiber processing, a lower phonon energy environment still remains about the RE. More specifically, NP doping was performed for fabricating and studying erbium doped fibers, where Er3+-doped lanthanum fluoride (Er:LaF3) NPs were synthesized and their properties investigated to determine advantages for NP doping to conventional soluble salt doping. In addition, for this Thesis, different rare earth NP suspensions were produced and studied along with the effects of different host materials in those suspensions. Slope efficiencies in excess of 70% were realized for Er3+ nanoparticle doping in a multimode fiber-based master oscillator power amplifier (MOPA). This Thesis will discuss the systematic study of NP and fiber properties. More specifically, NP doped suspensions and fibers were characterized and discussed by their physical, chemical, and spectroscopic properties to develop an understanding as to how to tailor and HEL relevant performance parameters. Advisors/Committee Members: Dr. John Ballato, Committee Chair, Dr. Philip Brown, Dr. Stephen Foulger.

Subjects/Keywords: Materials Science and Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vargas, A. L. (2019). Nanoparticle Doped Optical Fibers for High Energy Lasers. (Masters Thesis). Clemson University. Retrieved from https://tigerprints.clemson.edu/all_theses/3032

Chicago Manual of Style (16th Edition):

Vargas, Amber L. “Nanoparticle Doped Optical Fibers for High Energy Lasers.” 2019. Masters Thesis, Clemson University. Accessed September 20, 2020. https://tigerprints.clemson.edu/all_theses/3032.

MLA Handbook (7th Edition):

Vargas, Amber L. “Nanoparticle Doped Optical Fibers for High Energy Lasers.” 2019. Web. 20 Sep 2020.

Vancouver:

Vargas AL. Nanoparticle Doped Optical Fibers for High Energy Lasers. [Internet] [Masters thesis]. Clemson University; 2019. [cited 2020 Sep 20]. Available from: https://tigerprints.clemson.edu/all_theses/3032.

Council of Science Editors:

Vargas AL. Nanoparticle Doped Optical Fibers for High Energy Lasers. [Masters Thesis]. Clemson University; 2019. Available from: https://tigerprints.clemson.edu/all_theses/3032

.