Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Clemson University" +contributor:("Dr. Leidy Klotz, Committee Co-Chair"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Clemson University

1. Chen, Diana Ann. The Adaptable Growth of Seashells: Informing the Design of the Built Environment through Quantitative Biomimicry.

Degree: PhD, Civil Engineering, 2016, Clemson University

Our current design philosophy in the creation and planning of our country’s infrastructure exudes an attitude of nonchalance that is incongruous with the significant impact the built infrastructure has on the natural environment. We are living through an era of obsolescence, in which structures are demolished thoughtlessly as they outgrow their ability to meet human demands. Obsolescence can be viewed as a “hazard” in the sense that this phenomenon is leaving swaths of buildings in unusable and undesirable conditions, lessening the quality of host locales, and polluting the environment with demolitions and the need for more construction resources. Designing our buildings to be adaptable to changing needs, rather than sufficient for predicted loads and functions, may help mitigate the amount of unnecessary demolitions. However, designing adaptably is not something we know how to do well; luckily, Nature has billions of years of experience that we can turn to. Biomimicry is a design approach that emulates Nature’s time-tested patterns and strategies for sustainable solutions to human challenges. While biomimicry has been used in many fields, applications in the built environment at the structures scale are scarce. Moreover, the examples that we do see are largely concerning thermal regulation. Even more troubling is how the popularization of biomimicry has led to frequent and misleading claims that qualitative, conceptual inspiration is inherently sustainable, given mere references of Nature. This project pairs infra/structural problems with natural solutions to bring these issues to attention in the civil engineering discipline. The spiraled shell of the Turritella terebra, a marine snail, is studied in this research to provide engineers with an example of how to use biomimicry in a comprehensive way. The spiraled gastropod shell demonstrates a simple form of adaptable growth, in which it is able to change its form through time to meet increases in its own performance demands. This project discusses how the snail’s environmental conditions influence its evolutionary traits through one of Nature’s principles (form follows function). The shell is mathematically characterized and structurally modeled to identify the functional roots responsible for its interesting resulting form. By pinpointing the emergent properties leading to adaptable growth, we create an opportunity to extract fundamental lessons of adaptability for application to the built environment. Shell samples of the T. terebra are experimentally tested with a structural engineering lens, and a finite element (FE) model of the shell is validated with these results. The FE model is then used to study parametric effects of ecological constraints—such as drag on the shell, fracture due to predators, and living space—to identify how adjustments to Nature’s design compare to reality. Many interesting findings about shell growth are discussed; however, comparisons to human structures are generalized into three main notions. The shell optimizes living convenience as… Advisors/Committee Members: Dr. Brandon Ross, Committee Co-Chair, Dr. Leidy Klotz, Committee Co-Chair, Dr. Qiushi Chen, Dr. Michael Carlos Barrios Kleiss.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, D. A. (2016). The Adaptable Growth of Seashells: Informing the Design of the Built Environment through Quantitative Biomimicry. (Doctoral Dissertation). Clemson University. Retrieved from https://tigerprints.clemson.edu/all_dissertations/1740

Chicago Manual of Style (16th Edition):

Chen, Diana Ann. “The Adaptable Growth of Seashells: Informing the Design of the Built Environment through Quantitative Biomimicry.” 2016. Doctoral Dissertation, Clemson University. Accessed January 21, 2021. https://tigerprints.clemson.edu/all_dissertations/1740.

MLA Handbook (7th Edition):

Chen, Diana Ann. “The Adaptable Growth of Seashells: Informing the Design of the Built Environment through Quantitative Biomimicry.” 2016. Web. 21 Jan 2021.

Vancouver:

Chen DA. The Adaptable Growth of Seashells: Informing the Design of the Built Environment through Quantitative Biomimicry. [Internet] [Doctoral dissertation]. Clemson University; 2016. [cited 2021 Jan 21]. Available from: https://tigerprints.clemson.edu/all_dissertations/1740.

Council of Science Editors:

Chen DA. The Adaptable Growth of Seashells: Informing the Design of the Built Environment through Quantitative Biomimicry. [Doctoral Dissertation]. Clemson University; 2016. Available from: https://tigerprints.clemson.edu/all_dissertations/1740

.