Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Clemson University" +contributor:("Colin D. McMillen, Committee Co-chair"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Clemson University

1. Kobra, Khadijatul. X-Panding Halogen Bonding Interactions: Hybrid Cocrystals Composed of Ionic Halides, Iodine and Organoiodines.

Degree: PhD, Chemistry, 2020, Clemson University

Halogen bonding referred to as an attractive, noncovalent interaction between an electrophilic region of a halogen atom X (acts as Lewis acid) and a nucleophilic region of a molecule Y (acts as Lewis base). Such interactions and the resulting polymeric networks play an important role in many fields related to crystal engineering, including for example, the fabrication of liquid crystals and novel drug design. The application of halogen bonding has particular promise in biological systems by increasing the lipophilicity of drugs to improve penetration through lipid membranes and tissues, enabling better intracellular delivery. Based on this concept, my research at Clemson University included the synthesis and characterization of many cocrystals derived from different alkyl/aryl ammonium/phosphonium iodides, an additional iodine source and neutral organohalogen compounds to establish versatile halogen bonding networks. Iodide salts such as PPh3MeI, NMe3PhI, (Me)4NI, (Et)4NI, 2-chloro-1-methylpyridinium iodide, 3-methylbenzothiazolium iodide, trimethylbenzylammonium iodide, tributylbenzylammonium iodide etc., an additional iodine source such as I2, iodoform etc., and several neutral organoiodines such as 1,2- or 1,4-diiodotetraflurobenzene, tetraiodoethylene, etc. have been used to synthesize salt-solvate cocrystals, where iodide or triiodide anions couple with the organic cation to form the salt component, and the neutral organiodine molecule can act as a “solvating” species. The anions and organoiodine molecules then form robust and varied halogen bonding networks, while the cations can also influence the structure based on their size, and their participation in complementary intermolecular interactions such as phenyl embraces, pi-pi interactions, and CH-pi interactions. For example, triphenylmethyl phosphonium iodide reacts with iodine and tetraiodoethylene to form triphenylmethylphosphonium triiodide cocrystal with tetraiodoethylene both by a simple mechanochemical synthesis (grinding the components together) and by solution chemistry (slow evaporation) in a variety of solvents. By varying the reaction stoichiometry, temperature, and solvent type, a robust crystal chemistry has been revealed. The resulting halogen bonding networks exhibit different chains, layers, or three-dimensional networks and broadened the scope and potential applications of halide crystal engineering. Additionally, several polyiodide salts have been synthesized by varying the reaction stoichiometry of iodide salts and the source of iodine used. The resulting polyiodide networks also exhibit different chains, layers, or three-dimensional networks based on the halogen bonding interactions formed. This study helps to understand the structural nature of higher polyiodides on a fundamental level and provides new insights into the classification of such polyiodides within the continuum of covalent and halogen bonding interactions. Moreover, some iodide cocrystals with organoiodine compounds have also been synthesized and their… Advisors/Committee Members: William T. Pennington, Committee Chair, Colin D. McMillen, Committee Co-chair, Joseph S. Thrasher, Stephen E. Creager, Rakesh Sachdeva.

Subjects/Keywords: Chemistry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kobra, K. (2020). X-Panding Halogen Bonding Interactions: Hybrid Cocrystals Composed of Ionic Halides, Iodine and Organoiodines. (Doctoral Dissertation). Clemson University. Retrieved from https://tigerprints.clemson.edu/all_dissertations/2572

Chicago Manual of Style (16th Edition):

Kobra, Khadijatul. “X-Panding Halogen Bonding Interactions: Hybrid Cocrystals Composed of Ionic Halides, Iodine and Organoiodines.” 2020. Doctoral Dissertation, Clemson University. Accessed October 31, 2020. https://tigerprints.clemson.edu/all_dissertations/2572.

MLA Handbook (7th Edition):

Kobra, Khadijatul. “X-Panding Halogen Bonding Interactions: Hybrid Cocrystals Composed of Ionic Halides, Iodine and Organoiodines.” 2020. Web. 31 Oct 2020.

Vancouver:

Kobra K. X-Panding Halogen Bonding Interactions: Hybrid Cocrystals Composed of Ionic Halides, Iodine and Organoiodines. [Internet] [Doctoral dissertation]. Clemson University; 2020. [cited 2020 Oct 31]. Available from: https://tigerprints.clemson.edu/all_dissertations/2572.

Council of Science Editors:

Kobra K. X-Panding Halogen Bonding Interactions: Hybrid Cocrystals Composed of Ionic Halides, Iodine and Organoiodines. [Doctoral Dissertation]. Clemson University; 2020. Available from: https://tigerprints.clemson.edu/all_dissertations/2572

.