Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Bordeaux" +contributor:("Mounoud, Pierre"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Barucchieri, Bianca. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.

Degree: Docteur es, Mathématiques Pures, 2019, Bordeaux

Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte sur l’espace affine. Ce sont les groupes fondamentaux des variétés affines compactes et complètes. Nous classifions les groupes cristallographiques dont la partie linéaire préserve une forme hermitienne de signature (n,1). Grunewald et Margulis ont prouvé que ces groupes cristallographiques sont virtuellement résolubles (la conjecture d’Auslander affirme que c’est toujours le cas). Notre classification est effectuée pour n ≤ 3. Elle correspond à la classification, à revêtement fini près, des variétés Hermite-Lorentz plates, compactes et complètes en dimension complexe inférieure ou égale à4. Ce travail est inspiré par ceux menés par Bieberbach, puis Fried, et enfin Grunewald et Margulis sur les groupes cristallographiques dont la partie linéaire préserve une forme quadratique définie positive ou lorentzienne. En effectuant cette classification, nous avons été amené à étudier certains familles d’algèbres de Lie nilpotentes de dimension 8. Nous avons ensuite étendu cette classification à celle de toutes les algèbres de Lie 3-nilpotentes de dimension 8 ayant l’algèbre de Lie libre 3-nilpotente à 3générateurs pour quotient. Ce résultat peut être vu comme un pas dans la direction d’une classification des algèbres de Lie nilpotentes de dimension 8. Ensuite nous nous sommes demandé lesquelles de ces algèbres admettent une métrique pseudo-riemannienne plate et nous avons donné une réponse partielle.

In this work we deal with crystallographic groups, i.e. the subgroups of the group of affine transformations that act properly discontinuously and cocompactly on affine space. In otherwords they are the fundamental groups of compact and complete affine manifolds. In this thesis we classify such groups with the additional hypothesis that the linear part preserves a Hermitian form of signature (n,1). Grunewald and Margulis proved that such crystallographic groups are virtually solvable (the Auslander conjecture states that this is always true). Our classification is for n ≤ 3. It corresponds to a classification, up to finite covering, and for complex dimension at most 4, of flat compact complete Hermite-Lorentz manifolds. This is inspired by the works done by Bieberbach,then Fried, and finally Grunewald and Margulis who classified crystallographic groups whose line arpart preserves a positive definite or Lorentzian quadratic form. Making this classification we had to classify a family of 8-dimensional nilpotent Lie algebras. We then extended this classification toall the 8-dimensional 3-step nilpotent Lie algebras having the free 2-step nilpotent Lie algebra on 3generators as quotient. This result can be seen as a step in the direction of a general classification of nilpotent Lie algebras of dimension 8. We then wondered which of these Lie algebras admit flat pseudo-Riemannian metrics and gave a partial answer to this question.

Advisors/Committee Members: Koziarz, Vincent (thesis director), Mounoud, Pierre (thesis director).

Subjects/Keywords: Variétés affines; Groupes cristallographiques; Variétés Hermite-Lorentz; Algèbres de Lie nilpotentes; Affine manifolds; Crystallographic groups; Hermite-Lorentz manifolds; Nilpotent Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barucchieri, B. (2019). Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2019BORD0153

Chicago Manual of Style (16th Edition):

Barucchieri, Bianca. “Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.” 2019. Doctoral Dissertation, Bordeaux. Accessed September 21, 2020. http://www.theses.fr/2019BORD0153.

MLA Handbook (7th Edition):

Barucchieri, Bianca. “Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.” 2019. Web. 21 Sep 2020.

Vancouver:

Barucchieri B. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. [Internet] [Doctoral dissertation]. Bordeaux; 2019. [cited 2020 Sep 21]. Available from: http://www.theses.fr/2019BORD0153.

Council of Science Editors:

Barucchieri B. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. [Doctoral Dissertation]. Bordeaux; 2019. Available from: http://www.theses.fr/2019BORD0153

.