Full Record

Author | Wang, Jing |

Title | Versatile Three-Phase Power Electronics Converter based Real-time Load Emulators |

URL | https://trace.tennessee.edu/utk_graddiss/3478 https://trace.tennessee.edu/cgi/viewcontent.cgi?article=4686&context=utk_graddiss |

Publication Date | 2015 |

Degree Level | doctoral |

University/Publisher | University of Tennessee – Knoxville |

Abstract | This dissertation includes the methodology, implementation, validation, as well as real-time modeling of a load emulator for a reconfigurable grid emulation platform of hardware test-bed (HTB). This test-bed was proposed by Center of Ultra-wide-area Resilient Electric Energy Transmission Network (CURENT) at the University of Tennessee, at Knoxville in 2011, to address the transmission level system challenges posed by contemporary fast changing energy technologies. Detailed HTB introduction, including design concept, fundamental units and hardware construction, is elaborated. In the development, current controlled three-phase power electronics converter based emulator unit is adopted to create desired power system loading conditions. In the application, constant impedance, constant current and constant power (ZIP) load has been emulated to represent power system steady state load, with reference to voltage and frequency variations. Also, an induction motor represented dynamic load emulator is developed with a focus on grid-tied starting transient emulation. The technical challenges on the induction motor emulator’s hardware and software capabilities to represent the fast varying transient is encountered, analyzed and solved in the development process. They include: emulator hardware tracking bandwidth, real-time digital microprocessor calculation capability, credibility of motor emulator’s performance, and electromagnetic/electromechanical transient numerical accuracy. |

Subjects/Keywords | Three-phase converter; power system emulation; hardware-in-the-loop; induction motor modeling; power system load; numerical analysis; Electrical and Electronics; Numerical Analysis and Scientific Computing; Power and Energy |

Country of Publication | us |

Format | application/pdf |

Record ID | oai:trace.tennessee.edu:utk_graddiss-4686 |

Repository | utk-diss |

Date Retrieved | 2019-01-07 |

Date Indexed | 2019-01-07 |

Sample Images | Cited Works

- [1] K. Tomsovic, ERC Strategic Framework: Proposal 7011579, ERC for CURENT, University of Tennessee at Knoxville, 2009.
- [2] Wind Maps. [Online]. Available: http://www.nrel.gov/gis/wind.html (Accessed: May 2015)
- [3] Solar Maps. [Online]. Available: http://www.nrel.gov/gis/solar.html (Accessed: May 2015)
- [4] EV Chargers by Network and State. [Online]. Available: http://energy.gov/eere/vehicles/fact-855-january-12-2015-electric-vehicle-chargersnetwork-and-state (Accessed: May 2015)
- [5] A. M. Gole, “Simulation tools for system transients: an introduction,” Proc. of IEEE Power Engineering Society Summer Meeting, vol. 2, 2000, pp. 761 – 762.
- [6] H. W. Dommel, “Digital computer solution of electromagnetic transients in single and multiphase networks,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-88, no. 4, pp. 388 – 399, Apr. 1969.
- [7] Power System Analysis Software Overview. [Online]. Available: http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software#P SAT (Accessed: Feb. 2015)
- [8] EMTP-RC. EMTP-RC technical Brochure. [Online]. Available: http://emtp.com/documents/EMTP-RV_brochure.pdf (Accessed: Feb. 2015).
- [9] DSATools. DSATools overview. [Online]. Available: http://www.dsatools.com/html/prod_overview.php (Accessed: Feb. 2015).
- [10] Siemens PSS/E. Technical brochure. [Online]. Available: http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/softwaresolutions/planning-data-management-software/Pages/overview.aspx (Accessed: Feb. 2015).
- [11] R. F. Beach, G. L. Kimnach, T. A. Jett, and L. M. Trash. “Evaluation of power control concepts using the PMAD systems test bed,” In Energy Conversion Engineering Conference, 1989. IECEC-89., Proceedings of the 24th Intersociety, pp. 327-332. IEEE, 1989.
- [12] T. Jett and L. Trash, “Space Station Freedom Power Management and Distribution Systems Test-bed Facility Description,” NASA Lewis Research Center Preliminary Information Report No. 219.
- [13] M. Mao, M. Ding, J. Su, L. Chang, M. Sun, and G. Zhang, “Test-bed for micro-grid with multi-energy generators,” Proc. of Canadian Conference on Electrical and Computer Engineering, pp. 637-640, 2008.
- [14] D. J. Cornforth, A. Berry, and T. Moore, “Building a micro-grid laboratory,” Proc. of IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE) , pp. 2035-2042, 2011.
- [15] J. Eto, R. Lasseter, B. Schenkman, J. Stevens, D. Klapp, H. Volkommer, E. Linton, H. Hurtado, and J. Roy, “Overview of the CERTS micro-grid laboratory test bed,” Proc. of CIGRE/IEEE PES Joint Symposium Integration of Wide-Scale Renewable Resources Into the Power Delivery System, pp. 1-1, 2009.
- [16] Chroma. 63600 overview. [Online]. Available: http://www.chromausa.com/product/modular-dc-electronic-load-63600/ (Accessed: Feb. 2015)
- [17] Chroma. 63800 overview. [Online]. Available: http://www.chromaate.com/product/63800_series_programmable_ac_and_dc_electronic_lo ad.htm (Accessed: Feb. 2015)
- [18] California Instruments. 3091LS series overview. [Online]. Available: http://www.programmablepower.com/electronic-load/3091LD/Overview.htm (Accessed: Feb. 2015)
- [19] NH Research. 4600 series overview. [Online]. Available: http://nhresearch.com/ac-dc-electronic-loads/ac-electronic-loads/ac-electronic-load-4600series/ (Accessed: Feb. 2015)
- [20] D. N. Kosterev, C. W. Taylor, W. A. Mittelstadt, “Model validation for the August 10, 1996 WSCC system outrage,” IEEE Transactions on Power System, vol. 14, no. 3, pp. 967 – 979, Aug. 1999.
- [21] D. Kosterev, A. Meklin, J. undrill, B. Lesieutre, W. Price, D. Chassin, R. Bravo, S. Yang, “Load modeling in power system studies: WECC progress update,” Proc. of Power and Energy Society General Meeting, July 2008, pp. 1-8.
- [22] V. Krishnan, J. D. McCalley, “Role of induction motors in voltage instability and coordinated reactive power planning,” INTECH Open Access Publisher, 2012.
- [23] NERC Transmission Issues Subcommittee, System Protection, and Control Subcommittee, “A technical reference paper fault-induced delayed voltage recovery,” Technical report, NERC, June 2009.
- [24] I. Hiskens, “Significance of Load Modeling in Power System dynamics,” presented at the X symposium of specialists in electric operational and expansion planning, May 2006.
- [25] IEEE Task Force on Load Representation for Dynamic Performance “Standard load models for power flow and dynamic performance simulation,” IEEE Transactions on Power System, vol. 10, no. 3, pp 1302 – 1313, 1995.
- [26] S. Jiang, U. D. Annakkage, A. M. Gole, “A platform for validation of FACTS models,” IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 484-491, Jan. 2006.
- [27] B. K. Choi, H. D. Chiang, Y. Li, H. Li, Y. Chen, D. Huang, M. Lauby, “Measurementbased dynamic load models: derivation, comparison, and validation,” IEEE Transactions on Power System, vol. 21, no. 3, pp. 1276 – 1283, Aug. 2006.
- [28] S. Chakraborty, M. D. Weiss, M. G. Simoes, “Distributed intelligent energy management system for a single-phase high-frequency ac micro-grid,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 97 – 109, Feb. 2007.
- [29] R. H. Lasseter, P. Piagi, “Micro-grid: a conceptual solution,” Proc. IEEE 35th Annual Power Electronics Specialists Conference, Jun. 2004, vol. 6, pp. 4285 – 4290.
- [30] F. Blaabjerg, R. Teodorescu, M. Liserre, A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398 – 1409, Oct. 2006.
- [31] G. Huff, A. Akhil, B. C. Kaun, et al. DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA (No. SAND2015-1002), Sandia National Laboratories, Albuquerque, NM, United States, 2015.
- [32] L. Snider, J. Belanger, G. Nanjundaiah, “Today’s power system simulation challenge: high perfromance, scalable, upgradable and afforable COTS-based real tiem digital simulators,” Proc. of Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2010, pp. 1 – 10.
- [33] P. Mercier, C. Cagnon, M. Ttreault, M. Toupin, “A real-time digital simulation of power system at Hydrio Quebec,” Proc. of the ICDS Conference, April, 1995.
- [34] J. R. Marti, and L R. Linares, “Real-time EMTP-based transients simulation,” IEEE Transactions on Power Systems, vol. 9, no. 3, Aug. 1994.
- [35] M. Kezunovic, M. Aganagic, V. Skendzic, J. Domaszewicz, J. K. Bladow, D. M. Hamai and S. M. Mckenna, “Transients computation for relay testing in real-time,” IEEE Transactions on Power Delivery, vol. 9, no. 3, Jul. 1994.
- [36] M. Panwar, B. Lundstrom, J. Langston, S. Suryanarayanan, S. Chakraborty, “An overview of real time hardware-in-the-loop capabilities in digital simulation for electric micro-grids,” Proc. of North American Power Symposium (NAPS), pp. 1 – 6, 2013.
- [37] W. Ren, M. Sloderbeck, M. Steurer, V. Dinavahi, T. Noda, S. Filizadeh, A. R. Chevrefils, M. Matar, R. Iravani, C. Dufour, J. Belanger, M. O. Faruque, K. Strunz, J. A. Martinez, “Interfacing Issues in Real-Time Digital Simulators,” IEEE Transactions on Power Delivery, pp. 1221-1230, vol. 26, no. 2, April 2011.
- [38] R. Kuffel, J. Giesbrecht, T. Maguire, et al, “RTDS – a fully digital power system siimulator operating in real time,” Proc. of International Conference on Energy Management and Power Delivery, 1995, vol. 2, pp. 498 – 503.
- [39] S. Abourida, C. Dufour, J. Belanger, G. Murere, N. Lechevin, B. Yu, “ Real-time PC based simulator of electric systems and drives,” Proc. of Applied Power Electronics Conference and Exposition (APEC), Mar, 2002, pp. 433 – 438.
- [40] M. F. Iacchetti, R. Perini, M. S. Carmeli, F. Castelli-Dezza, N. Bressan, “Numerical integration of ODEs in real-time systems like state observers: stability aspects,” IEEE Transactions on Industry Applications, pp. 132-141 vol. 48, no. 1, Jan. 2012
- [41] K. Butlerr-Purry, H. M. Chou, “Real-time rapid embedded power system control prototyping simulation using Labview and RTDS,” Practical Applications and Solutions using Labview Software, 2011.
- [42] Y. Li, D. M. Vilathgamuwa, P. C. Loh, “Design, analysis and real-time testing of a controller for multibus micro-grid system,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1195 – 1204, Sep. 2004.
- [43] P. Kotsampopoulos, A. Kapetanaki, G. Messinis, V. Kleftakis, N. Hatziargyriou, “A PHIL facility for Micro-grids,” International Journal of Distributed Energy Resources, vol. 9, no. 1, pp. 71-86, Mar. 2013.
- [44] J. H. Jeon, J. K. Kim, H. M. Kim, S. K. Kim, C. Cho, J. M. Kim, J. B. Ahn, K. Y. Nam, “Development of hardware-in-the-loop simulation system for testing operation and control functions of micro-grid,” IEEE Transactions on Power Electronics, vol. 25, no. 12, pp. 2919 – 2929, Dec. 2010.
- [45] A. H. Etemadi, E. J. Davison, R. Iravani, “A decentralized robust control strategy for multider micro-grids – part I: fundamental concepts,” IEEE Transactions on power delivery, vol. 27, no. 4, pp. 1843 – 8153, Oct. 2012.
- [46] A. H. Etemadi, E. J. Davison, R. Iravani, “A Decentralized Robust Control Strategy for Multi-DER Microgrids—Part II: Performance Evaluation,” IEEE Transactions on Power Delivery, vol. 27, no. 4, pp. 1854 – 1861, Oct. 2012.
- [47] V. Salehi, A. Mohamed, A. Mazloomzadeh, O. A. Mohammed, “Laboratory based smart power system, part I: design and system development,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1394 – 1404, 2012.
- [48] B. Belvedere, M. Bianchi, A. Borghetti, C. A. Nucci, M. Paolone, A. Peretto, “A microcontroller based power management system for standalone micro-grids with hybrid power supply,” IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 422 – 431, Jul. 2012.
- [49] M. Andrus, M. Steurer, C. Edrington, F. Bogdan, H. Ginn, R. Dougal, E. Santi, A. Monti, “Real-time simulation-based design of a power-hardware-in-the-loop setup to support studies of shipboard MVDC issues,” Proc. of 2009 Electric Ship Technologies Synposium (ESTS), pp. 141-151, Apr. 2009.
- [50] A. Chakrabortty, Y. Xin, “Hardware-in-the-loop simulations and verifications of smart power systems over an Exo-GENI testbed,” presented in 2013 Second GENI Research and Educational Experiment Workshop (GREE), pp. 16-19, Mar. 2013.
- [51] F. Guo, L. Herrera, M. Alsolami, H. Li, P. Xu, X. Lu, A. Lang, Z. Long, and J. Wang, “Design and development of a reconfigurable hybrid Microgrid test bed,” Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Sept. 2013, pp. 1350-1356.
- [52] Y. Chen, V. Dinavahi, “Digital hardware emulation of universal machine and universal line models for real-time electromagnetic transient simulation,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1300 – 1309, Feb. 2012.
- [53] A. Drolia, P. Jose, N. Mohan, “An approach to connect ultracapacitor to fuel cell powered electric vehicle and emulating fuel cell electrical characteristics using switched mode converter,” Proc. of Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 897 – 901, Nov. 2003.
- [54] X. Chen, J. Sun, “Characterization of inverter-grid interactions using a hardware-in-theloop system test-bed,” Proc. of IEEE International Conference on Power Electronics and ECCE Asia (ICPE&ECCE), May – June 2011, pp. 2180 – 2187.
- [55] C. Choi, W. Lee, “Analysis and compensation of time delay effects in hardware-in-the-loop simulation for automotive PMSM drive system,” IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 3403 – 3410, Sep. 2012.
- [56] H. Y. Kanaan, M. Caron, K. Al-Haddad, “Design and implementation of a two-stage grid connected high efficiency power load emulator,” IEEE Transactions on Power Electronics, vol. 29, no. 8, Aug. 2014.
- [57] R. Krishnan, Electric motor drives: modeling, analysis, and control. Englewood Cliffs, NJ: Prentice Hall, 2001.
- [58] P. C. Krause, et al. Analysis of electric machinery and drive systems. Hoboken, NJ: John Wiley & Sons, 2013.
- [59] Vacon. Ac Motor Drive Datasheet. [Online]. Available: http://www.vacon.com/ImageVaultFiles/id_2808/cf_2/Vacon-X4-Installation-ManualDPD00088A-EN.PDF (Accessed: Feb. 2015)
- [60] P.C. Krause and C. H. Thomas, “Simulation of symmetrical induction machinery,” IEEE Transaction on Power Appratus and Systems, vol. PAS-84, no. 11, pp.1038-1053, Nov. 1965.
- [61] P. Kundur, Power System Stability and Control. New York: McGrawHill, 1994.
- [62] A.M. Wahl, and L.A. Kilgore, “Transient starting torques in induction motors,” in Transactions of Electrical Engineering, vol. 59, issue 11, pp. 603-607, Feb. 2013.
- [63] K.G. Shin, P. Ramanathan, “Real-time computing: a new discipline of computer science and engineering,” in Proceedings of the IEEE, vol. 82, issue 1, pp. 6-24, Jan, 1994.
- [64] R. J. Gran, Numerical computing with Simulink. Philadelphia, PA: Society for Industrial and Applied Mathematics – SIAM, 2007.
- [65] S. Hiti, D. Boroyevich and C. Cuadros, “Small-signal modeling and control of three-phase PWM converters,” in Conference Record of the 1994 IEEE Industry Applications Society Annual Meeting, Oct. 1994, pp. 1143-1150.
- [66] B. Wen, D. Boroyevich, P. Mattavelli, Z. Shen and R. Burgo, “Experimental verification of the generalized nyquist stability criterion for balanced three-phase ac systems in the presence of constant power loads,” Proc. IEEE Energy Convers. Congr. Expo., Sep. 2012, pp. 3926-3933.
- [67] R. Burgos, D. Boroyevich, F. Wang, K. Karimi, G. Francis, “On the ac stability of high power factor three-phase rectifiers,” Proc. IEEE Energy Convers. Congr. Expo., Sep. 2010, pp. 2047-2054.
- [68] M. Belkhayat. Stability Criteria for AC Power Systems with Regulated Loads. Ph. D. dissertation, Purdue Universtiy, Dec. 1997.
- [69] S. Lentijo, S. D’Arco, A. Monti, “Comparing the dynamic performances of power hardware-in-the-loop interfaces,” IEEE Transaction on Industrial Electronics, vol. 57, no. 4, pp. 1195-1207, 2010.
- [70] B. Wen, D. Boroyevich, P. Mattavelli, Z. Shen, R. Burgos, “Influence of phase-locked loop on input admittance of three-pahse voltage-source converters,” Proc. IEEE Applied Power Electronics Conference and Exposition, Mar. 2013, pp. 897 – 904.
- [71] X. Zhang, F. Wang, W. Cao, and Y. Ma, “Influence of voltage feed-forward control on small-signal stability of grid-tied inverters,” present in Proc. IEEE Applied Power Electronics Conference and Exposition, Mar. 2015.
- [72] C. M. Wildrick, F. C. Lee, B. H. Cho, B. Choi, “A method of defining the load impedance specification for a stable distributed power system,” IEEE Transactions on Power Electronics, vol. 10, no. 3, pp. 280-285, May. 1995.
- [73] M. Steurer, C.S. Edrington, M. Sloderbeck, W. Ren, J. Langston, “A Megawatt-Scale Power Hardware-in-the-Loop Simulation Setup for Motor Drives,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp.1254-1260, 2010.
- [74] M. Armstrong, D. J. Atkinson, A. G. Jack, and S. Turner, “Power system emulation using a real time, 145 kW, virtual power system,” in Proc. Eur. Conf. Power Electron. Appl., 2005, 10 pp.-p. 10.
- [75] S. Grubic, B. Amlang, W. Schumacher, A. Wenzel, “A high performance electronic hardware-in-the-loop drive-load simulation using a linear inverter (LinVerter),” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1208 – 1216, Apr. 2010.
- [76] S. Uebener, J. Bocker, “Application of an e-machine emulator for power converter tests in the development of electric drives,” European Electric Vehicle Congress, EEVC Brussels, Belgium, Nov. 19 – 22, 2012, pp. 1-9.
- [77] Y. S. Rao and M. C. Chandorkar, “Real-time electrical load emulator using optimal feedback control technique,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1217-1225, Apr. 2010.
- [78] J. Wang , Y. Ma , L. Yang , L. M. Tolbert and F. Wang, “Power converter-based threephase induction motor load emulator,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2013, pp. 3270-3274.
- [79] O. Vodyakho, M. Steurer, C. S. Edrington, F. Fleming, “An induction machine emlator for high-power applications utilizing advanced simulation tools with graphical user interfaces,” IEEE Transactions on Eergy Conversion, vol. 27, no. 1, pp. 160-172, Mar. 2012.
- [80] R.M. Kennel, T. Boller, J. Holtz, “Replacement of electrical (load) drives by a hardware-inthe-loop system”, Proc. of Joint Conference Electrical Machines and Power Electronics and Electromotion (ACEMP), Sep. 2011, pp. 17-25.
- [81] H. Slater, D. Atkinson, and A. Jack, “Real-time emulation for power equipment development. Part II: The virtual machine,” in Proc. Inst. Elect. Eng., vol. 145, no. 3, pp. 153–158, May 1998.
- [82] Mathworks Ordinary Differential Equations. [Online]. Available at : http://www.mathworks.com/help/matlab/math/ordinary-differential-equations.html (accessed Mar. 2015)
- [83] V. Karapanos, S. de Haan, K. Zwetsloot, “Real time simulation of a power system with VSG hardware-in-the-loop,” in Proc. IEEE Industrial Electronics Society IECON'2011, Australia, Nov. 2011.
- [84] W. Zhu, S. Pekarek, J. Jatskevich, O. Wasynczuk, D. Delisle, “A model-in-the-loop interface to emulate source dynamics in a zonal dc distribution system,” IEEE Transactions on Power Electronics, vol. 20, no. 2, pp. 438-445, Mar. 2005.
- [85] L. Yang , X. Zhang , Y. Ma , J. Wang , L. Hang , K. Lin , M. Tolbert , Leon, F. Wang and K. Tomsovic, “Hardware implementation and control design of generator emulator in multi-converter system,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2013, pp. 2316-2323.
- [86] Y. Ma, L. Yang, J. Wang, F. Wang, and L. M. Tolbert, “Emulating full-converter wind turbine by a single converter in a multiple converter based emulation system,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2013, pp. 3042-3047.
- [87] W. Cao, Y. Ma, J. Wang, L. Yang, J. Wang, F. Wang, and L. M. Tolbert, “Two-stage PV inverter system emulator in converter based power grid emulation system,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 2013, pp. 4518-4525.
- [88] B. Liu, S. Zheng, Y. Ma, F. Wang, and L. M. Tolbert, “Control and implementation of converter based AC transmission line emulation,” Proc. of Applied Power Electronics Conference (APEC), Mar. 2015.
- [89] A. Emadi and M. Ehsani, “Multi-converter power electronic systems: definition and applications,” in Proc. IEEE 32nd Power Electron. Spec. Conf., Jun. 2001, pp. 1230–1236.
- [90] Ren, W. Accuracy evaluation of power hardware-in-the-loop simulation. Ph.D dissertation, Electrical Computer. Engineering Department, Florida State University, Tallahassee, FL,
- [91] J. Wang , L. Yang , Y. Ma , X. Shi , X. Zhang , L. Hang , K. Lin , L. M. Tolbert , F. Wang and K. Tomsovic, “Regenerative power converters representation of grid control and actuation emulator,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 2012, pp. 24602465.
- [92] J. Wang, L. Yang, Y. Ma, J. Wang, L. M. Tolbert, F. Wang, K. Tomsovic, “Static and dynamic power system load emulation in converter-based reconfigurable power grid emulator,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 2014, pp. 4008-4015.
- [93] S. Gupta and V. Rangaswamy, “Load bank elimination for UPS testing,” in Proc. Conf. Rec. IEEE-IAS Annu. Meeting, pp.1040-1043, 1990.
- [94] S. Huang, F. Pai, “Design and operation of burn-in test system for three-phase uninterruptible power supplies,” IEEE Transactions of Industrial Electronics, vol. 49, no. 1, pp. 256 – 262, Feb. 2002.
- [95] M. Tsai, “Comparative investigation of the energy recycler for power electronics burn-in test,” in Proc. Inst. Elect. Eng. and Elect. Power Appl., vol. 147, no. 3, pp.192-198, May 2000.
- [96] C. Wang, Y. Zou, K. Jia, F. Li, Y. Zhang, X. She, “Research on the power electronic load based on repetitive controller,” Proc. of Applied Power Electronics Conference and Exposition, Feb. 2008, pp. 1735-1740.
- [97] R. Vazquez, E. Olias, A. M. Roldan, A. Barrado, J. Pleite, “Implementaqtion of a loss-free programmable ac load,” Proc. of Annual Conference of the Industrial Electronics Society, Aug.-Sep. 1998, pp. 630-635.
- [98] I. W. Joeng, M. Slepchenkov, K. Smedley, and F. Maddaleno, “Regenerative AC electronic load with one-cycle control,” Proc. IEEE Applied Power Electronics Conference and Exposition, Mar. 2010, pp. 1166-1171.
- [99] I. Jeong, S. Mikhail, K. Smedley. “Medium voltage multilevel AC regenerative load with One-Cycle Control,” Proc. of Applied Power Electronics Conference and Exposition, Mar. 2011, pp. 2084-2091.
- [100] M. Chang, J. Lin, S. Jung, Y. Tzou, “Design and implementation of a real-time lossless dynamic electronic load simulator,” Proc. of Power Electronics Specialists Conference, Jun. 1997, pp. 734-739.
- [101] J. Baek, M. Ryoo, J. Kim. J. Lai, “50kVA regenerative active load for power test system,” Proc. on European Conference on Power Electronics and Applications, Sep. 2007, pp.1-8.
- [102] J. Heerdt, D. Coutinho, S. Mussa, M. Heldwein, “Control strategy for current harmonic programmed ac active electronic power loads,” IEEE Transacitons on Industrial Electronics, vol. 61, no. 8, pp. 3810-3822, Aug. 2014.
- [103] R. Klein, A. Paiva, M. Mezaroba, “Emulation of nonlinear loads with energy regeneration,” Proc. of Brazilian Power Electronic Conference, Sep. 2011, pp. 884-890.
- [104] C. Sousa, F. Matos, V. Mendes, I. Lopes, S. Silva, S. Seleme, Jr., “Regenerative PWM source for power transformer loading tests,” Proc. of IEEE International Conference on Industrial Technology, Mar. 2010, pp. 961-966.
- [105] Z. Huang, Y. Zou, “Design and analysis on the power electronic load,” Proc. of International Power Electronics and Motion Control, May 2009, pp. 2649-2653.
- [106] S. Primavera, G. Rella, F. Maddaleno, K. Smedley, A. Abramovitz, “One-cycle controlled three-phase electronic load,” IET Power Electronics, vol. 5, no. 6, pp. 827-832, July 2012.
- [107] W. Cao, Y. Ma, J. Wang, and F. Wang, “Virtual series impedance emulation control for remote PV or wind farms,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2014, pp. 411-418.
- [108] Y. Ma, L. Yang, J. Wang, X. Shi, F. Wang, and L. M. Tolbert, “Circulating current control and reduction in a paralleled converter test-bed system,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 2013, pp. 5426-5432.
- [109] L. Yang, Y. Ma, J. Wang, J. Wang, X. Zhang, W. Cao, L. Hang, L. M. Tolbert, F. Wang, and K. Tomsovic, “Development of converter based reconfigurable power grid emulator,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 2014, pp. 3990-3997.
- [110] D. N. Kosterev, A. Meklin, “Load modeling in WECC,” in Proc. IEEE PES Power Systems Conference and Exposition, Oct. 2006, pp. 576-581.
- [111] IEEE Task Force on Load Representation for Dynamic Performance, “Standard load models for power flow and dynamic performance simulation,” IEEE Transaction on Power Systems, vol. 10, no. 3, pp. 1302-1313, August 1995.
- [112] A. Keyhani, H. Tsai, “IGSPICE simulation of induction machines with saturable inductances,” IEEE Transactions on Energy Conversion, vol.4, no. 1, pp. 118-125, Mar. 1989.
- [113] A. Iserles, A first course in the numerical analysis of differential equations. New York, NY: Cambridge University Press, 2009.
- [114] S. C. Chapra, Numerical methods for engineers. New York, NY: McGraw-Hill, 2010.
- [115] H. W. Dommel, Electromagnetic Transients Program Reference Manual (EMTP Theory Book). Report Prepared for Bonneville Power Administration, Portland, Oregon, August 1986.
- [116] G. R. Slemon, “Modeling of induction machines for electric drives,” IEEE Transactions on Industry Applications, vol. 25, no. 6, pp. 1126-1131, Nov. 1989.
- [117] J. F. Blom, “The transient behavior of a three-phase induciton motor studied with an analogue computer,” Ingenieru, 1959, 71, p. E61.
- [118] F. M. Hughes, A. S. Aldred, “Transient characeristics and simulation of induciton motors,” Proc. of the Institution of Electrical Engineers, vol. 111, no. 12, pp. 2041 – 2050, Dec. 1964.
- [119] H. E. Jordan, “Digital computer analysis of induction machines in dynamic systems,” IEEE Transactions on Power Apparatus and Systems, no. 6, pp. 722-728, 1967.
- [120] W. D. Humpage, B. Scott, “Predictor-corrector methods of numerical integration in digitalcomputer analyses of power-system transient stability,” in Proc. of the Institution of Electrical Engineers, vol. 112, no. 8, pp. 1557-1565, Aug. 1965.
- [121] A. K. Sarkar, G. J. Berg, “Digital simulation of three-phase induction motors,” IEEE Transactions of Power Apparatus and Systems, PAS-89 (6), pp. 1031 – 1036, Jul. 1970.
- [122] G. Anderson, “Modeling and analysis of electrical power systems,” Lecture 227-0528-00, EEH-Power Systems Laboratory, 2004, ETH, Zurich, pp. 80-81.
- [123] N. S. Gehlot, P. J. Alsina, “A discrete model of induction motors for real-time control applications,” IEEE Trans. on Industrial Electronics, vol. 40, no. 3, pp. 317-325, 1993.
- [124] B. M. Joshi, M.C. Chandorkar, “Time discretization issues in induction machine model solving for real-time applications,” Proc. of Electric Machines & Drives Conference (IEMDC), 2011, pp. 675 – 680.
- [125] L. Wang, J. Jatskevich, C. Wang, P. Li, “A voltage-behind-reactance induction machine model for the EMTP-type solution,” IEEE Transactions on Power Systems, vol. 23, no. 3, Aug. 2008.
- [126] B. M. Joshi, M. C. Chandorkar, “Time discretizaiton issues in induction machine model solving for real-time applications,” in Proc. IEEE International Electric Machines & Drives Conference (IEMDC), May 2011, pp. 675-680.
- [127] J. Belanger, L. A. Snider, J. N. Paquin, C. Pirolli, W. Li, “A modern and open real-time digital simulator of comtemporary power systems,” Proceedings of the International Conference on Power Systems Transients (IPST 2009), Kyoto, Japan, June 2-6, 2009.
- [128] M. Konghirun, L. Xu, J. Skinner-Gray, “Quantization errors in digital motor control systems,” in Proc. of the 4th International Power Electronics and Motion Control Conference (2004 IPEMC), Aug. 2004, vol. 3, pp. 1421-1426.
- [129] H. Zhu, H. Fujimoto, “Suppression of current quantization effects for previse current control of SPMSM using dithering techniques and Kalman filter,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1361 – 1371, Feb. 2014.
- [130] Texas Instruments. TMS320F28335 specifications. [Online] Available: http://www.ti.com/product/tms320f28377d (Accessed: May 2015)
- [131] Texas Instruments. TMS320F28377D specifications. [Online] Available: http://www.ti.com/product/tms320f28335 (Accessed: Feb. 2015)
- [132] Texas Instruments. TMS320F28335 eZdsp evaluation DSP board instructions. [Online] Available: http://www.ti.com/tool/TMDSEZ28335 (Accessed: Feb. 2015)
- [133] “IEEE Standard Test Procedure for Polyphase Induction Motors and Generators,” IEEE Std 112 – 2004, Revic. IEEE Std 112 – 1996, pp. 1 – 79, 2004.
- [134] T. A. Lipo, A. Consoli, “Modeling and simulation of induction motors with saturable leakage reactances,” IEEE Transaction on Industry Applications, vol IA-20, no. 1, pp. 180189, 1984.
- [135] E. Klingshirn, H. Jordan, “Simulation of polyphase induction machines with deep rotor bars,” IEEE Transaction on Power Apparatus and Systems, vol. PAS-89, no.6, pp.10381043, Jan, 2007.
- [136] S. D. Sudhoff, D. C. Aliprantis, B. T. Kuhn, P. L. Chapman, “An induction machine model for predicting inverter-machine interaction,” IEEE Transaction on Energy Conversion, vol. 17, no. 2, pp.203-210, Jun. 2002.
- [137] X. Luo, H. A. Toliyat, A. El-Antably, and T. A. Lipo, “Multiple coupled circuit modeling of inuction machiens,” IEEE Trans. Industry Applications, vol. 31, pp. 311 – 318, Mar./Apr. 1995.