Full Record

New Search | Similar Records

Title Tellurite Fiber for High Power Mid-Wave Infrared Supercontinuum Generation
Publication Date
Degree MS
Discipline/Department Photonic Science and Technology
Degree Level masters
University/Publisher Clemson University
Abstract Broadband, high-power, mid-infrared sources are critical for many applica-tions. Fiber based supercontinuum generation is the optimum mid-infrared broad-band source that can provide extended bandwidth and good coherence. Compared to alternatives such as fluorides and chalcogenides, tellurite fibers are more robust and can handle much higher power. Tellurite fibers also have high nonlinearity and a ma-terial zero dispersion wavelength close to 2 µm. This makes them ideal for nonlinear processes pumped by Tm-doped silica fiber lasers. We demonstrated tellurite fibers by using a simple stack and draw process. This fabrication method requires simple setup and is easily repeatable. Due to the difficulty in producing soft glass tubes, we have drawn a stack-and-draw preform without the need for an over-clad tube. The stack-and-draw process provides several advantages over other solid and micro-structured designs. Our solid tellurite fiber design shows potential for broadband mid-infrared supercontinuum generation. We have also shown that designs with low dispersion are the key for broadband mid-infrared supercontinuum generation in tellurite fibers pumped at 2 µm.
Contributors Dr. Liang Dong, Committee Chair; Dr. John Ballato; Dr. Lin Zhu
Country of Publication us
Record ID oai:tigerprints.clemson.edu:all_theses-3479
Repository clemson
Date Retrieved
Date Indexed 2020-05-01

Sample Images | Cited Works