Full Record

New Search | Similar Records

Title Biological redesign of virus particles for a new era of catalytic materials
Publication Date
Date Accessioned
Discipline/Department College of Letters & Science
University/Publisher Montana State University
Abstract Biology has designed a suite of compartments and barriers that confine fundamental biochemical reactions. Such barriers include the membrane-bound organelles but also a suite of protein-based compartments that architecturally and chemically integrate catalytic processes. These compartments co-polymerize from multiple protein subunits to form polyhedral structures that spatially separate enzymatic processes. Protein compartments confine volatile intermediates, trap toxic reaction products, and co-localize multiple enzymatic processes for catalytic enhancements. The protein-based compartments represent, advantageously, a combination of form and function that has inspired the synthesis of new, designer materials. The self-assembly of cage-like structures, the structures of which are reminiscent of the compartments, has been used for the directed encapsulation of active enzymes. We have used the capsid from bacteriophage P22, as a nanocontainer for directing the encapsulation of a variety of gene products, including active enzymes. The P22 capsid assembles from a coat protein (CP) and a scaffold protein (SP) which templates its assembly. Using the simplicity of the P22 expression system, a strategy was developed and implemented for the directed encapsulation of an active, [NiFe] hydrogenase. We hypothesized and proved the enzyme active site needed to be matured by accessory proteins found within the expression host. A two plasmid expression system was designed, where the hydrogenase cargo was under the control of a different inducer than the P22 CP. The [NiFe]-hydrogenase is a heterodimer and each enzyme subunit was fused to different SP. The resultant packaging of the two SP fusions, with the hydrogenase large and small subunits fused to them stabilized a weak heterodimeric structure. Remarkably, the stabilizing effects of the capsid allowed us to probe the infrared signatures associated with the hydrogenase active site. Finally, the progress made here in developing a virus capsid for H2 production left room to build increased complexity into the P22-Hydrogenase system while also taking inspiration from the innate, biological function of the hydrogenase. We incorporated a cytochrome/cytochrome reductase pair to drive H 2 production using NADH. These designs, built at the molecular level, represent inherently renewable catalysts that pave the way for a new era of catalytic materials synthesized entirely by biology.
Subjects/Keywords Viruses.; Catalysis.; Bioengineering.; Hydrogenase.
Contributors Chairperson, Graduate Committee: Trevor Douglas (advisor); Dustin P. Patterson, Kendall N. Saboda, Ethan J. Edwards, Heini M. Miettinen, Gautam Basu, Megan C. Thieleges and Trevor Douglas were co-authors of the article, 'Self-assembling biomolecular catalysts for hydrogen production' in the journal 'Nature chemistry' which is contained within this dissertation. (other); Joseph C-Y Wang, Ethan J. Edwards, Heini M. Miettinen, Amanda L. Le Sueur, Megan C. Thielges , Adam Zlotnick and Trevor Douglas were co-authors of the article, 'Redesign of a virus particle for NADH-driven hydrogen production' which is contained within this dissertation. (other); This dissertation contains one article of which Paul Campion Jordan is not the main author. (other)
Language en
Rights Copyright 2016 by Paul Campion Jordan
Country of Publication us
Record ID oai:scholarworks.montana.edu:1/13800
Repository montstate
Date Indexed 2018-12-06
Issued Date 2016-01-01 00:00:00

Sample Images