Full Record

Author | Wang, Hanxiong, 1989- |

Title | Energy materials: modeling, design and applications of electrowetting, thermoelectric and superconducting materials |

URL | https://rucore.libraries.rutgers.edu/rutgers-lib/60075/ |

Publication Date | 2019 |

Degree | PhD |

Discipline/Department | Mechanical and Aerospace Engineering |

Degree Level | doctoral |

University/Publisher | Rutgers University |

Abstract | Energy materials play a significant role in modern material science. To understand the mechanism of functional materials, an energy functional formulation method can provide an efficient way to systematically describe the behavior of energy materials. Energy formulation method also has the advantage in dealing with the difficulties in the field formulation. In this thesis, we mainly have three parts of work based on energy formulation method. First, an interesting problem on the equilibrium shape of a bubble/droplet in an electric field is investigated. This is important for electrowetting over dielectrics (EWOD), electrohydrodynamic enhancement for heat transfer, and electro-deformation of a single biological cell among others. In this part of work, we develop a general variational formulation on account of electro-mechanical couplings. In the context of electrohydrodynamics (EHD), we identify the free energy functional and the associated energy minimization problem that determines the equilibrium shape of a bubble in an electric field. Based on this variational formulation, we implement a fixed mesh level-set gradient method for computing the equilibrium shapes. This numerical scheme is efficient and validated by comparing with analytical solutions at the absence of electric field and experimental results at the presence of electric field. We also present simulation results for zero gravity which will be useful for space applications. The variational formulation and numerical scheme are anticipated to have broad applications in areas of EWOD, EHD, and electro-deformation in biomechanics. Secondly, based on the continuum theory of thermoelectric materials developed by Liu[71], we predict that the power factor of thermoelectric (TE) composites can be significantly enhanced by simple laminate structures. This prediction is numerically verified by the Finite Element Model (FEM) that is implemented to compute the local fields in heterogeneous TE structures of general geometries and boundary conditions. Among many other applications, the FEM enables to investigate the effects of small electrical contact on power generation. For a cylindrical sandwich TE structure, we show that the power output of the TE sandwich structure, though lowered by a small contact area, is still significantly larger than that of the constituent TE semiconductor. Thirdly, we study the type II superconducting materials. Many applications of high-temperature superconductors(HTS) need a high critical current density Jc, especially under a strong external magnetic field. An effective way to enhance Jc is to pin the vortex array to avoid flux flow. Therefore, fluxing pinning plays an important role in the properties of HTS. Here, based on Ginzburg- Landau theory and classic Landau theory of micromagnetics, we formulate the total free energy of the system associated with superconducting materials coupling with paramagnetic inhomogeneities. Consider thin film scenario, pinning force which is related to the size of inhomogeneity, paramagnetic… |

Subjects/Keywords | Variational inequalities (Mathematics) |

Contributors | Liu, Liping (chair); NORRIS, ANDREW (internal member); Mazzeo, Aaron (internal member); Han, Zheng-Chao (outside member); School of Graduate Studies |

Language | en |

Rights | The author owns the copyright to this work. |

Country of Publication | us |

Format | 1 online resource (131 pages) : illustrations |

Record ID | oai:example.org:rutgers-lib:60075 |

Other Identifiers | rutgers-lib:60075; ETD_9430; doi:10.7282/t3-eg6m-7283 |

Repository | rutgers |

Date Indexed | 2019-08-21 |

Sample Images | Cited Works

- [1] G. Allaire and F. Jouve. Minimum stress optimal design with the level set method. Engineering Analysis With Boundary Elements, 32(11):909–918, 2008.
- [2] Grégoire Allaire, François Jouve, and Anca-Maria Toader. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 194(1):363 – 393, 2004.
- [3] Peter Berg, Sven-Joachim Kimmerle, and Arian Novruzi. Modeling, shape analysis and computation of the equilibrium pore shape near a pem–pem intersection. Journal of Mathematical Analysis and Applications, 410(1):241 – 256, 2014.
- [4] R. Bustamante, A. Dorfmann, and R.W. Ogden. On electric body forces and maxwell stresses in nonlinearly electroelastic solids. International Journal of Engineering Science, 47:1131 – 1141, 2009.
- [5] P. Carrica, P. Dimarco, and W. Grassi. Nucleate pool boiling in the presence of an electric field: Effect of subcooling and heat-up rate. Experimental Thermal and Fluid Science, 15(3):213–220, 1997.
- [6] F. Chen, Y. Peng, and and M.Chen Y. Z.Song. Ehd behavior of nitrogen bubbles in dc electric fields. Experimental Thermal and Fluid Science, 32(1):174–181, 2007.
- [7] K. J. Cheng and J. B. Chaddock. Deformation and stability of drops and bubbles in an electric field. Physics Letters, 106A(1):51–53, 1984.
- [8] K.J. Cheng and J.B. Chaddock. Maximum size of bubbles during nucleate boiling in an electric field. International Journal of Heat and Fluid Flow, 7(4):278 – 282, 1986.
- [9] H. J. Cho, I. S. Kang, Y. C. Kweon, and M. H. Kim. Study of the behavior of a bubble attached to a wall in a uniform electric field. International Journal of Multiphase Flow, 22(5):909–922, 1996.
- [10] H. J. Cho, I. S. Kang, Y. C. Kweon, and M. H. Kim. Numerical study of the behavior of a bubble attached to a tip in a non-uniform electric field. International Journal of Multiphase Flow, 24(3):479–498, 1998 1998.
- [11] W. Dong, R. Y. Li, H. L.Yu, and Y. Y. Yan. An investigation of behaviours of a single bubble in a uniform electric field. Experimental Thermal and Fluid Science, 30(6):579–586, 2006.
- [12] J. D. Eshelby. Energy relations and the energy-momentum tensor in continuum mechanics. pages 77–115. M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee (Eds.). Inelastic behavior of solids, McGraw-Hill: New York, 1970. 122
- [13] C. G. Garton and Z. Krasucki. Bubbles in insulating liquid: stability in an electric field. Proceedings of the Royal Society, 280(1382):383–397, 1964.
- [14] Yury Grabovsky, Vladislav A. Kucher, and Lev Truskinovsky. Weak variations of Lipschitz graphs and stability of phase boundaries. Continuum Mechanics and Thermodynamics, 23(2):87–123, 2011.
- [15] F. J. Higuera. Injection of bubbles in a quiescent inviscid liquid under a uniform electric field. Journal of Fluid Mechanics, 568:203–222, 2006.
- [16] Y. Hristov, D. Zhao, D. Kenning, K. Sefiane, and T. Karayiannis. A study of nucleate boiling and critical heat flux with ehd enhancement. Heat and Mass Transfer, 45(7):999–1017, 2009.
- [17] Chen J, M. Abdelgawad, L. Yu, N. Shakiba, W-Y Chien, Z. Lu, W. R. Geddie, M. Jewett, and Y. Sun. Electrodeformation for single cell mechanical characterization. J. Micromech. Microeng., 21:054012, 2011.
- [18] J.Simon. Differentiation with respect to the domain in boundary value problems. Numerical Functional Analysis and Optimization, 2(7):649–687, 1980.
- [19] T. G. Karayiannis. Ehd boiling heat transfer enhancement of r123 and r11 on a tube bundle. Applied Thermal Engineering, 18(9-10):809–817, 1988.
- [20] Sven-Joachim Kimmerle, Peter Berg, and Arian Novruzi. An electrohydrodynamic equilibrium shape problem for polymer electrolyte membranes in fuel cells. In IFIP Conference on System Modeling and Optimization, pages 387–396. Springer, 2011.
- [21] Wolfgang Kuhnel. Differential Geometry: Curves - Surfaces - Manifolds. American Mathematical Society, 2005.
- [22] Y. C. Kweon and M. H. Kim. Experimental study on nucleate boiling enhancement and bubble dynamic behavior in saturated pool boiling using a nonuniform dc electric field. International Journal of Multiphase Flow, 26(8):1351–1368, 2000.
- [23] Kehinde O. Ladipo, Peter Berg, Sven-Joachim Kimmerle, and Arian Novruzi. Effects of radially dependent parameters on proton transport in polymer electrolyte membrane nanopores. The Journal of Chemical Physics, 134(7):074103, 2011.
- [24] Liping Liu. On energy formulations of electrostatics for continuum media. Journal of the Mechanics and Physics of Solids, 61(4):968 – 990, 2013.
- [25] Liping Liu. An energy formulation of continuum magneto-electro-elasticity with applications. Journal of the Mechanics and Physics of Solids, 63:451–480, FEB 2014.
- [26] P. Di Marco, W. Grassi, G. Memoli, T. Takamasa, A. Tomiyama, and S. Hosokawa. Influence of electric field on single gas-bubble growth and detachment in microgravity. International Journal of Multiphase Flow, 29(4):559–578, 2003.
- [27] P. Di Marco, R. Kurimoto, G. Saccone, K. Hayashi, and A. Tomiyama. Bubble shape under the action of electric forces. Experimental Thermal and Fluid Science, 49:160– 168, 2013. 123
- [28] J. C. Maxwell. A treatise on electricity and magnetism. Oxford, United Kindgdom: Clarendon Press, 1873.
- [29] M.E.Gurtin and A.I.Murdoch. A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal., 57(4):291–323, 1975.
- [30] J. R. Melcher. Continuum Electromechanics. The MIT Press, 1981.
- [31] J R Melcher and G I Taylor. Electrohydrodynamics: A review of the role of interfacial shear stresses. Annual Review of Fluid Mechanics, 1(1):111–146, 1969.
- [32] R. S. Neve and Y. Y. Yan. Enhancement of heat exchanger performance using combined electrohydrodynamic and passive methods. International Journal of Heat and Fluid Flow, 17(4):403–409, 1996.
- [33] J. Ogata and A. Yabe. Basic study on the enhancement of nucleate boiling heat transfer by applying electric fields. International Journal of Heat and Mass Transfer, 36(3):775–782, 1993.
- [34] S. D. Oh and H. Y. Kwak. A study of bubble behavior and boiling heat transfer enhancement under electric field. Heat Transfer Engineering, 21(4):33–45, 2000.
- [35] S Osher and J. A. Sethian. Fronts propagating with curvature-dependent speedalgorithms based on hamilton-jacobi formulations. J. Comp. Phys., 79(1):12–49, 1988.
- [36] Stanley J. Osher and Fadil Santosa. Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum. Journal of Computational Physics, 171(1):272 – 288, 2001.
- [37] Carlos Rinaldi and Howard Brenner. Body versus surface forces in continuum mechanics: Is the maxwell stress tensor a physically objective cauchy stress? Phys. Rev. E, 65:036615, Feb 2002.
- [38] S. Wongwises. S. Laohalertdecha, P. Naphon. A review of electrohydrodynamic enhancement of heat transfer. Renewable and Sustainable Energy Review, 11(5):858–876, 2007.
- [39] D. A. Saville. Electrohydrodynamics: The taylor-melcher leaky dielectric model. Annual Review of Fluid Mechanics, 29:27–64, 1997.
- [40] J. A. Sethian. Level Set Method: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, 1996.
- [41] J.A. Sethian and Andreas Wiegmann. Structural boundary design via level set and immersed interface methods. Journal of Computational Physics, 163(2):489 – 528, 2000.
- [42] J. A. Stratton. Electromagnetic Theory. Adams Press, 1941.
- [43] A.K. Tagantsev. Piezoelectricity and flexoelectricity in crystalline dielectrics. Physical Review B, 34:5883–5889, 1986.
- [44] G. I. Taylor. Disintegration of water drops in an electric field. Proceedings of the Royal Society, 280(1381):221–226, 1964. 124
- [45] R. A. Toupin. The elastic dielectric. J. Rational Mech. Anal., 5:849–914, 1956.
- [46] R. A. Toupin. Stress tensors in elastic dielectrics. Arch. Rational Mech. Anal., 5:440– 452, 1960.
- [47] M. C. Zaghdoudi and M. Lallemand. Nucleate pool boiling under dc electric field. Experimental Heat Transfer, 14(3):157–180, 2001.
- [48] M. C. Zaghdoudi and M. Lallemand. Electric field effects on pool boiling. Journal of Enhanced Heat Transfer, 9(5-6):187–208, 2002.
- [49] H.B. Zhang, Y.Y. Yan, and Y.Q. Zu. Numerical modelling of {EHD} effects on heat transfer and bubble shapes of nucleate boiling. Applied Mathematical Modelling, 34(3):626 – 638, 2010.
- [50] Y.Q. Zu and Y.Y. Yan. A numerical investigation of electrohydrodynamic (ehd) effects on bubble deformation under pseudo-nucleate boiling conditions. International Journal of Heat and Fluid Flow, 30(4):761 – 767, 2009.
- [51] T. Tritt, and M. Subramanian. Thermoelectric materials, phenomena, and applications: A bird’s eye view MRS Bulletin, 31(3):188-194, 2006.
- [52] D. T. Crane, D. Kossakovski, and L. E. Bell. Modeling the Building Blocks of a 10% Efficient Segmented Thermoelectric Power Generator Journal of Electronic Materials., 38(7): 1382–1386, 2009.
- [53] A. Yadav, K. P. Pipe, and M. Shtein. Fiber-based flexible thermoelectric power generator Journal of Power Sources, 175(2): 909–913 ,2008.
- [54] L. E. Bell. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems Science, 321(5895): 1457-1461, 2008.
- [55] F. DiSalvo. Thermoelectric cooling and power generation Science, 285(5428): 703– 706,1999.
- [56] G. Nolas, D. Morelli, and T. Tritt. Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications Annual Review of Materials Science, 29(71): 89–116, 1999.
- [57] L. Hicks, T. Harman, and M. Dresselhaus. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials Applied Physics Letters, 63(23): 3230–3232, 1993.
- [58] L. Hicks, and M. Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit Physical Review B, 47(19): 12727, 1993.
- [59] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren. Enhanced Thermoelectric Figure-ofMerit in Nanostructured p-type Silicon Germanium Bulk Alloys Nano Letters, 8(12): 4670–4674, 2008.
- [60] H. Lee, D. Vashaee, D. Z. Wang, M. Dresselhaus, Z. F. Ren, and G. Chen. Effects of nanoscale porosity on thermoelectric properties of SiGe Journal of Applied Physics, 107(9), 2010. 125
- [61] Y. Lan, A. J. Minnich, G. Chen, and Z. Ren. Enhancement of Thermoelectric Figureof-Merit by a Bulk Nanostructuring Approach Advanced Functional Materials, 20(3): 357–376, 2010.
- [62] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn. Thin-film thermoelectric devices with high room-temperature figures of merit Nature, 413(42):597–602, 2001.
- [63] O. Yamashita, and H. Odahara. Effect of the thickness of Bi-Te compound and Cu electrode on the resultant Seebeck coefficient in touching Cu/Bi-Te/Cu composites Journal of Materials Science, 42(13): 5057-5067, 2007.
- [64] K.F Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit Science, 303(5659): 818-821, 2004.
- [65] D. Bergman, and O. Levy. Thermoelectric properties of a composite medium Journal of Applied Physics, 70(11): 6821-6833, 1991.
- [66] D. Narducci. Do we really need high thermoelectric figures of merit? A critical appraisal to the power conversion efficiency of thermoelectric materials Applied Physics Letters, 99(10), 2011.
- [67] L. P. Liu. Feasibility of large-scale power plants based on thermoelectric effects New Journal of Physics, 16, 2014.
- [68] H. Imai, Y. Shimakawa, and Y. Kubo. Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition Physics Review B, 64(24), 2001.
- [69] D. Bergman, and L. Fel. Enhancement of thermoelectric power factor in composite thermoelectrics Journal of Applied Physics, 85(12), 8205–8216, 1999.
- [70] D. Vashaee, and A. Shakouri. Improved thermoelectric power factor in metal-based superlattices Physical Review Letters, 92(10), 2004.
- [71] L. Liu. A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites International Journal of Engineering Science, 55:35-53, 2012.
- [72] L. Liu On energy formulations of electrostatics for continuum media Journal of the Mechanics and Physics of Solids, 61(4), 968 - 990, 2013.
- [73] L. P. Tan, T. Sun, S. Fan, R. V. Ramanujan, and H. H. Hng. Facile precipitation of two phase alloys in SnTe0.75Se0.25 with improved power factor Journal of Alloys and Compounds, 587:420–427, 2014.
- [74] M. Zebarjadi, K. Esfarjani, A. Shakouri, J. Bahk, Z. Bian, G. Zeng, J. Bowers, H. Lu, J. Zide, and A. Gossard. Effect of nanoparticle scattering on thermoelectric power factor Applied Physics Letters, 94(20), 202105 (2009).
- [75] J. Zide, D. Klenov, S. Stemmer, A. Gossard, G. Zeng, J. Bowers, D. Vashaee, and A. Shakouri. Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles Applied Physics Letters., 87(11), 112102 2005. 126
- [76] K. Malik, D. Das, S. Bandyopadhyay, P. Mandal, A. K. Deb, V. Srihari, and A. Banerjee. Temperature-dependent structural property and power factor of n type thermoelectric Bi0.90Sb0.10 and Bi0.86Sb0.14 alloys Applied Physics Letters., 103(24), 242108 (2013).
- [77] G. J. Lehr, D. T. Morelli, H. Jin, and J. P. Heremans. Enhanced thermoelectric power factor in Yb1-xScxAl2 alloys using chemical pressure tuning of the Yb valence Journal of Applied Physics, 114(22), 223712 (2013).
- [78] T. H. Zou, X. Y. Qin, D. Li, G. L. Sun, Y. C. Dou, Q. Q. Wang, B. J. Ren, J. Zhang, H. X. Xin, and Y. Y. Li. Simultaneous enhancement in thermoelectric power factor and phonon blocking in hierarchical nanostructured beta-Zn4Sb3-Cu3SbSe4 Applied Physics Letters., 104(1), 013904 (2014).
- [79] Herbert B. Callen, The Application of Onsager’s Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects Phys. Rev., 73: 1349, 1948.
- [80] Camar-Eddine, M and Milton, GW Non-local interactions in the homogenization closure of thermoelectric functionals Asymptotic analysis, 41(3-4): 259-276, 2002.
- [81] Yang, Y., Xie, S. H., Ma, F. Y., & Li, J. Y. On the effective thermoelectric properties of layered heterogeneous medium Journal of Applied Physics, 111, 013510 (2012).
- [82] Yang Y., Ma F., Lei C., Liu Y. and Li J., Nonlinear asymptotic homogenization and the effective behavior of layered thermoelectric composites Journal of the Mechanics and Physics of Solids, 61: 1768 –1783, 2013.
- [83] Yang Y., Gao C. and Li J. The effective thermoelectric properties of core-shell composites Acta Mechanica, 225: 1211 –1222, 2014.
- [84] Gurevich, A. Pinning size effects in critical currents of superconducting films Superconductor Science and Technology, 20(9), 2007
- [85] Bezotosny, P. and Gavrilkin, S. and Lykov, A. and Attanasio, C. and Cirillo, C. and Prischepa, S. Asymmetry of the Pinning Force in Thin Nb Films in Parallel Magnetic Field Journal of Superconductivity and Novel Magnetism, 24(5): 1553, 2011
- [86] Kaname Matsumoto, Paolo Mele, Ataru Ichinose, Masashi Mukaida, Yutaka Yoshida, Shigeru Horii and Ryusuke Kita Flux Pinning Characteristics of Artificial Pinning Centers With Different Dimension IEEE Transactions on Applied Superconductivity, 19(3): 3248 –3253, 2009
- [87] Wu, T.C., Yang, T.J., Kang, P.C., Horng, L. and Wu, J.C. Anisotropic pinning effect on a Nb thin film with triangular arrays of pinning sites Journal of Applied Physics, 95(11 II): 6696-6698, 2004
- [88] Silhanek, A.V., Zhu, B.Y., Raedts, S., Moshchalkov, V.V., Van Look, L. and Jonckheere, R. Enhanced vortex pinning by a composite antidot lattice in a superconducting Pb film Physical Review B - Condensed Matter and Materials Physics, 72(1), 2005
- [89] Yampolskii, S. V. and Genenko, Yu. A. Entry of magnetic flux into a magnetically shielded type-II superconductor filament Physics Review B, 71(134519), 2005 127
- [90] Genenko, Y. A. and Rauh, H. Superconductor strip in a closed magnetic environment: exact analytic representation of the critical state Physica C, 39(39073330), 2007
- [91] Genenko, Yu. A., Rauh, H. and Yampolskii, S. V. The Bean-Livingston barrier at a superconductor/magnet interface Journal of Physics: Condensed Matter, 17(10): L93,
- [92] Genenko, Yu. A., Yampolskii, S. V. and Pan, A. V. Virgin magnetization of a magnetically shielded superconductor wire: theory and experiment Applied Physics Letters, 84(19): 3921 –3923, 2004
- [93] Yampolskii, S.V., Genenko, Y.A. and Rauh, H. Distribution of the sheet current in a magnetically shielded superconducting filament Physica C: Superconductivity and its applications, 415: 151 –157, 2004
- [94] Genenko, Y.A., Rauh, H. and Snezhko, A. A novel magnet/superconductor heterostructure for high-field applications Superconductor Science and Technology, 14(9): 669 –703, 2001
- [95] Genenko, Yu. A., Snezhko, A. V. Superconductor strip near a magnetic wall of finite thickness Journal of Applied Physics, 92(1): 357, 2002
- [96] Genenko, Y.A. Magnetic shielding for improvement of superconductor performance Physica Status Solidi (A) Applied Research 189(2): 469 –473, 2002
- [97] Carneiro, G. Tunable pinning of a superconducting vortex by a magnetic vortex Physical Review B - Condensed Matter and Materials Physics, 75(9), 2007
- [98] Carneiro, G. Tunable critical current for a vortex pinned by a magnetic dipole Europhysics Letters, 71(5): 817 –823, 2005
- [99] Carneiro, G. Tunable interactions between vortices and a magnetic dipole Physical Review B - Condensed Matter and Materials Physics, 72(14), 2005
- [100] Carneiro, G. Simple model for tunable vortex pinning by a magnetic dipole Physica C: Superconductivity and its applications, 437-438: 42 –45, 2006
- [101] Helseth, L.E. Anomalous interaction between vortices and nanomagnets Physics Letters, Section A: General, Atomic and Solid State Physics 319(3-4): 413 –415, 2003
- [102] Erdin, S., Lyuksyutov, I.F., Pokrovsky, V.L. and Vinokur, V.M. Topological textures in a ferromagnet-superconductor bilayer Physical Review Letters, 88(1): 170011170014, 2002
- [103] Koorevaar, P., Zwart, C., Aarts, J. and Coehoorn, R Interplay between superconductivity and magnetism in various superconducting/ferromagnetic multilayers Physica B: Physics of Condensed Matter, 194-196(PART 2): 2385-2386, 1994
- [104] Ledvij, M., Dobrosavljević-Grujić, L., Radović, Z. and Clem, J.R. Vortex and nonvortex nucleation of superconductivity in ferromagnetic-superconducting-ferromagnetic triple layers Physical Review B, 44(2): 859 –862, 1991 128
- [105] Cao, R., Horng, Lance, Wang, J. C., Wu, J. C., Yang, T. J. and Wu, T. C. Special pinning phenomena in superconductors with regular composite pinning arrays Journal of Applied Physics, 107(9), 2010
- [106] Martı́n, J.I., Vélez, M., Nogués, J. and Schuller, I.K. Flux pinning in a superconductor by an array of submicrometer magnetic dots Physical Review Letters 79(10): 1929 – 1932, 1997
- [107] Gillijns, W., Silhanek, A.V., Moshchalkov, V.V., Milošević, M.V. and Peeters, F.M. Influence of magnet size on magnetically engineered field-induced superconductivity Physical Review B - Condensed Matter and Materials Physics, 76(18), 2007
- [108] Silhanek, A.V., Gillijns, W., Volodin, A., Moshchalkov, V.V., Milošević, M.V. and Peeters, F.M. Optimization of superconducting critical parameters by tuning the size and magnetization of arrays of magnetic dots Physical Review B - Condensed Matter and Materials Physics, 76(10), 2007
- [109] Milošević, MV and Peeters, FM Vortex-antivortex nucleation in superconducting films with arrays of in-plane dipoles Physica C-Superconductivity and its Applications, 437-38: 208 –212, 2006
- [110] Milošević, M.V. and Peeters, F.M. Field-enhanced critical parameters in magnetically nanostructured superconductors Europhysics Letters, 70(5): 670 –676, 2005
- [111] Milošević, M. V. and Peeters, F. M. Vortex-antivortex nucleation in magnetically nanotextured superconductors: Magnetic-field-driven and thermal scenarios Physics Review Letters, 94(227001), 2005
- [112] Milošević, M.V. and Peeters, F.M. Vortex–antivortex molecules induced by a magnetic disk on top of a superconducting film––influence of the magnet geometry Physica C: Superconductivity and its applications, 404: 281 –284, 2004
- [113] Milošević, M.V. and Peeters, F.M. Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots Physica C: Superconductivity and its applications, 404: 246 –250, 2004
- [114] Milosevic, M. V. and Peeters, F. M. Vortex-Antivortex Lattices in Superconducting Films with Magnetic Pinning Arrays Journal of Low Temperature Physics, 139(1-2): 257 –272, 2005
- [115] Milošević, M.V. and Peeters, F.M. Vortex matter in the presence of magnetic pinning centra Journal of Low Temperature Physics, 130(3-4): 311 –320, 2003
- [116] Narayan D. Khatri, Goran Majkic, Renjie Wang, Aarthi Sundaram, Senthil Sambandam and Venkat Selvamanickam Prefabricated Metal Nanorods on Biaxially-Textured Templates on Flexible Substrates for REBCO Superconductors IEEE Transactions on Applied Superconductivity, 23(3): 6600705, 2013
- [117] Priour, Jr., D.J. and Fertig, H.A. Broken orientational and reflection symmetries in thin film superconductors with mesoscopic magnetic dipoles Physica C: Superconductivity and its applications, 404: 293 - 297, 2004 129
- [118] Priour Jr, D. J. and Fertig, H. A. Vortex States of a Superconducting Film from a Magnetic Dot Array Physics Review Letters, 93(5): 057003, 2004
- [119] Khatri, Narayan, Liu, Y., Yao, Y., Khatri, N. D., Liu, J., Galtsyan, E., Selvamanickam, V., Chen, Y. and Lei, C. Electromagnetic Properties of (Gd, Y)Ba2Cu3Ox Superconducting Tapes With High Levels of Zr Addition IEEE Transactions on Applied Superconductivity, 23(3), 2013
- [120] Eisenmenger, J., Oettinger, M., Pfahler, C., Plettl, A., Ziemann, P. and Walther, P. Temperature-dependent matching in a flux-line lattice interacting with a triangular array of pinning centers without long-range order Physical Review B - Condensed Matter and Materials Physics, 75(14), 2007
- [121] Yamada, H., Yamasaki, H., Ohki, K., Nakagawa, Y. and Mawatari, Y. Strong flux pinning in YBa2Cu3O7-δ thin films due to nanometer-sized precipitates Superconductor Science and Technology, 21(12), 2008
- [122] Selvamanickam, V., Zhang, Y., Guevara, A., Shi, T., Yao, Y., Majkic, G., Galtsyan, E., Chen, Y., Lei, C. and Miller, D. J. Effect of rare-earth composition on microstructure and pinning properties of Zr-doped (Gd, Y)Ba2Cu3Ox superconducting tapes Superconductor Science and Technology 25(4), 2012
- [123] Wee, Sung Hun, Goyal, Amit, Zuev, Yuri L., Cantoni, Claudia, Selvamanickam, V. and Specht, Eliot D Formation of Self-Assembled, Double-Perovskite, Ba2YNbO6 Nanocolumns and Their Contribution to Flux-Pinning and Jc in Nb-Doped YBa2Cu3O7-δ Films Applied Physics Express, 3(2): 1, 2010
- [124] Wee, S.H., Goyal, A., Specht, E.D., Cantoni, C., Zuev, Y.L., Cook, S. and Selvamanickam, V. Enhanced flux pinning and critical current density via incorporation of self-assembled rare-earth barium tantalate nanocolumns within YBa2 Cu3 O7-δ films Physical Review B - Condensed Matter and Materials Physics, 81(14), 2010
- [125] Sudesh, Varma, G. D., Das, S., Bernhard, C. and Shripathi, T. Study of superconducting properties of ferrocene-added MgB2 Physica Status Solidi A - Applications and Materials Science, 211(7): 1503 –1511, 2014
- [126] Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Zhou, S.H., Ionescu, M., Liu, H.K., Munroe, P. and Tomsic, M. Enhancement of the critical current density and flux pinning of MgB 2 superconductor by nanoparticle SiC doping Applied Physics Letters, 81(18): 3419-3421, 2002
- [127] Woch, W.M., Tokarz, W., Zalecki, R., Kolodziejczyk, A., Deinhofer, C. and Gritzner, G. Critical currents and magnetization of a (Tl0.5Pb 0.5)(Sr0.85Ba0.15)2Ca 2Cu3Oz film on silver substrate Superconductor Science and Technology, 23(2), 2010
- [128] Polat, A., Thompson, J.R., Christen, D.K., Cook, S.W., Sinclair, J.W., Zuev, Y.L., Kumar, D., Chen, Y. and Selvamanickam, V. Thickness dependence of magnetic relaxation and E-J characteristics in superconducting (Gd-Y)-Ba-Cu-O films with strong vortex pinning Physical Review B - Condensed Matter and Materials Physics, 84(2), 130
- [129] Choi, E.-M., Gupta, S.K., Lee, H.-S., Kim, H.-J., Lee, S.-I. and Sen, S. Critical current density of MgB2 thin films and the effect of interface pinning Superconductor Science and Technology, 17(9): 5524 –5527, 2004
- [130] Haage, T., Zegenhagen, J., Li, J.Q., Habermeier, H.-U., Cardona, M., Jooss, Ch., Warthmann, R., Forkl, A. and Kronmüller, H. Transport properties and flux pinning by self-organization in YBa2Cu3O7-δ films on vicinal SrTiO3 (001) Physical Review B - Condensed Matter and Materials Physics, 56(13): 8404 –8418, 1997
- [131] Wee, Sung Hun, Goyal, Amit, Zuev, Yuri L., Cantoni, Claudia, Selvamanickam, V. and Specht, Eliot D. Formation of Self-Assembled, Double-Perovskite, Ba2YNbO6 Nanocolumns and Their Contribution to Flux-Pinning and J(c) in NbDoped YBa2Cu3O7-delta Films Applied Physics Express, 3(2), 2010
- [132] Zdravkov, V. I., Kehrle, J., Obermeier, G., Gsell, S., Schreck, M., Mueller, C., von Nidda, H. -A. Krug, Lindner, J., Moosburger-Will, J., Nold, E., Morari, R., Ryazanov, V. V., Sidorenko, A. S., Horn, S., Tidecks, R. and Tagirov, L. R. Reentrant superconductivity in superconductor/ferromagnetic-alloy bilayers Physical Review B, 82(5),
- [133] Selvamanickam, Venkat, Chen, Yimin, Xiong, Xuming, Xie, Yiyuan Y., Martchevski, Maxim, Rar, Andrei, Qiao, Yunfei, Schmidt, Robert M. , Knoll, Allan, Lenseth, Kenneth P. and Weber, Chuck S. High Performance 2G Wires: From R&D to Pilot-Scale Manufacturing IEEE Transactions on Applied Superconductivity, 19(3): 3225 –3230,
- [134] Kakimoto, K., Igarashi, M., Hanada, Y., Hayashida, T., Tashita, C., Morita, K., Hanyu, S., Sutoh, Y., Kutami, H., Iijima, Y. and Saitoh, T. High-speed deposition of high-quality RE123 films by a PLD system with hot-wall heating Superconductor Science and Technology, 23(1), 2010
- [135] Rupich, Martin W., Li, Xiaoping, Thieme, Cees, Sathyamurthy, Srivatsan, Fleshler, Steven, Tucker, David, Thompson, Elliot, Schreiber, Jeff, Lynch, Joseph, Buczek, David, DeMoranville, Ken, Inch, James, Cedrone, Paul and Slack, James Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation Superconductor Science and Technology, 23(1),
- [136] Aladyshkin, A. Yu, Silhanek, A. V., Gillijns, W. and Moshchalkov, V. V. Nucleation of superconductivity and vortex matter in superconductor-ferromagnet hybrids Superconductor Science and Technology, 22(5), 2009
- [137] Stamopoulos, D. and Manios, E. and Pissas, M. Synergy of exchange bias with superconductivity in ferromagnetic-superconducting layered hybrids: the influence of in-plane and out-of-plane magnetic order on superconductivity Superconductor Science and Technology, 20(12): 1205–1222, 2007
- [138] Koren, G., Kirzhner, T. and Aronov, P. Critical current measurements in superconductor-ferromagnet-superconductor junctions of YBa2Cu3Oy-SrRuO3YBa2Cu3Oy: No evidence for dominant proximity-induced triplet superconductivity in the ferromagnetic barrier Physical Review B, 85(2), 2012 131
- [139] Yampolskii, SV and Yampolskaya, GI and Rauh, H Magnetic dipole-vortex interaction in a bilayered superconductor/soft-magnet heterostructure Europhysics Letters, 74(2): 334 –340, 2006
- [140] Milosevic, MV and Peeters, FM Superconducting Wigner vortex molecule near a magnetic disk Physical Review B, 68(2), 2003
- [141] Doria, MM Magnetic regions inside a superconductor and its effects on the vortex matter Physica C-Superconductivity and Its Applications, 404(1-4): 145 –152, 2004
- [142] Carneiro, G Interaction between vortices in superconducting films and magnetic dipole arrays Physica C-Superconductivity and Its Applications, 404(1-4): 78 –86, 2004
- [143] Zhao, Y, Feng, Y, Machi, T, Cheng, CH, Huang, DX, Fudamoto, Y, Koshizuka, N and Murakami, M Enhancement of critical current density in MgB2 bulk superconductor by Ti doping Europhysics Letters, 57(3): 437 –443, 2002
- [144] Palau, A., MacManus-Driscoll, J. L., Blamire, M. G. Magnetic vortex pinning in superconductor/ferromagnet nanocomposites Superconductor Science and Technology, 20(9, SI): S136-S140, 2007
- [145] Adamopoulos, N and Patapis, SK Role of interface quality in vortex pinning by large nonsuperconducting particles Physical Review B, 61(17): 11305-11308, 2000
- [146] Kayali, MA Theory of pinning in a superconducting thin film pierced by a ferromagnetic columnar defect Physical Review B, 71(2): 1098-0121, 2005
- [147] Blamire, M. G., Dinner, R. B., Wimbush, S. C. and MacManus-Driscoll, J. L. Critical current enhancement by Lorentz force reduction in superconductor-ferromagnet nanocomposites Superconductor Science and Technology, 22(2), 2009