Full Record

New Search | Similar Records

Author
Title Investigation of the transient nature of rolling resistance on an operating Heavy Duty Vehicle
URL
Publication Date
Discipline/Department Physics
University/Publisher Umeå University
Abstract An operating vehicle requires energy to oppose the subjected driving resistances. This energy is supplied via the fuel combustion in the engine. Decreasing the opposing driving resistances for an operating vehicle increases its fuel efficiency: an effect which is highly valued in today’s industry, both from an environmental and economical point of view. Therefore a lot of progress has been made during recent years in the area of fuel efficient vehicles, even though some driving resistances still rises perplexity. These resistances are the air drag F<sub>d</sub> generated by the viscous air opposing the vehicles propulsion and the rolling resistance F<sub>rr</sub> generated mainly by the hysteresis caused by the deformation cycle of the viscoelastic pneumatic tires. The energy losses associated with the air drag and rolling resistance account for the majority of the driving resistances facing an operating vehicle, and depends on numerous stochastic and ambient parameters, some of which are highly correlated both within and between the two resistances. To increase the understanding of the driving mechanics behind the energy losses associated with the complexity that is rolling resistance, a set of complete vehicle tests has been carried out. These tests were carried out on the test track Malmby Fairground, using a Scania CV AB developed R440 truck equipped with various sensors connected in one measurement system. Under certain conditions, these parameters can allow for an investigation of the rolling resistance, and a separation of the rolling resistance and air drag via explicit subtraction of the air drag from the measured traction force. This method is possible since the aerodynamic property A<sub>HDV</sub>C<sub>d</sub>(β) to some extent can be generated from wind tunnel tests and CFD simulations. Two measurement series that enable the above formulated method of separation were designed and carried out, using two separate measurement methods. One which enables the investigation of the transient nature of rolling resistance as it strives for stationarity, where the vehicle is operated under constant velocities i.e. no acceleration, and one using the well established method of coastdown, where no driving torque is applied. The drive cycles spanned a range of velocities, which allowed for dynamic and stationary analyses of both the tire temperature- and the velocity dependence of rolling resistance. When analysing the results of the transient analysis, a strong dependence upon tire temperature for given constant low velocity i.e. v ≤ 60 kmh<sup>−1</sup> was clearly visible. The indicated dependency showed that the rolling resistance decreased as the tire temperature increased over time at a given velocity, and vice versa, towards a stationary temperature and thereby rolling resistance. The tire temperature evolution from one constant velocity to another, took place well within 50 min to a somewhat stationary value. However, even though the tire temperature had reached stationarity, rolling…
Subjects/Keywords Rolling resistance; Air drag; Heavy Duty Vehicles; Vehicle dynamics; Complete vehicle test; Coastdown; Effective radius; ACEA; Pneumatic tires; Driving resistances; Energy efficiency; Rullmotstånd; Luftmotstånd; Tunga fordon; Fordonsdynamik; Helfordonstest; Utrullningstest; Effektiv radie; ACEA; Pneumatiska däck; Körmotstånd; Energieffektivitet.
Language en
Country of Publication se
Record ID oai:DiVA.org:umu-93298
Repository diva
Date Indexed 2020-01-03

Sample Search Hits | Sample Images | Cited Works

…Scania, but also addressed within the European Automobile Manufacturers’ Association (ACEA) and the project Models for rolling resistance In Road Infrastructure Asset Management Systems (MIRAIM), where among others the Swedish National…

…work in ACEA a measurement method, called CO2 -method, has been designed to enable separation of the two driving resistances rolling resistance and air drag while operating. The fundamental purpose of the method is to express the air drag…

…submodel characteristics will then be used when simulating a vehicle unique energy declaration [4]. The need for further analysis regarding the effect of assuming a velocity independent rolling resistance in the method proposed by ACEA, has been…

…emphasised by e.g. Pflug, H-C, who is highly involved with the ongoing process in ACEA [9]. Using the velocities considered in the CO2 -method designed by ACEA, a measurement cycle has been suggested that should measure both the initial and…

…considers non-driven wheels under a decelerating event, and hence not under realistic driving scenarios [28, 10]. As mentioned in section 1.1, ongoing work in ACEA has developed a measurement method to establish measurements of actual traction…

…by rolling resistance Frr , and air drag Fd , over specified stretch of road [4]. The idea of the method specified by ACEA is to end up with a result similar to the sketched graph in figure 6, which indicates the traction force needed to…

…method specified by ACEA, is not to study the rolling resistance [4]. However, as it is a parameter that has to be considered in the designed measurement method it still counts as a method for estimating the average rolling resistance of the…

…measurement principle specified in the ongoing work by ACEA is to enable energy classification of each unique vehicle, via simulations. To enable accurate data for these simulations every submodel’s aerodynamic properties AHDV Cd is required and shall be based…

.