Full Record

New Search | Similar Records

Author
Title Implementation of DC-DC converter with maximum power point tracking control for thermoelectric generator applications
URL
Publication Date
Discipline/Department Electrical Energy Conversion
University/Publisher KTH
Abstract A heavy duty vehicle looses approximately 30-40 % of the energy in the fuel as waste heat through the exhaust system. Recovering this waste heat would make the vehicle meet the legislative and market demands of emissions and fuel consumption easier. This recovery is possible by transforming the waste heat to electric power using a thermoelectric generator. However, the thermoelectric generator electric characteristics makes direct usage of it unprotable, thus an electric power conditioner is necessary. First a study of dierent DC-DC converters is presented, based on that the most suitable converter for thermoelectric application is determined. In order to maximize the harvested power, maximum power point tracking algorithms have been studied and analyzed. After the investigation, the single ended primary inductor converter was simulated and implemented with a perturb and observe algorithm, and the incremental conductance algorithm. The converter was tested with a 20 W thermoelectric generator, and evaluated.The results show that the incremental conductance is more robust and stable compared to the perturb and observe algorithm. Further on, the incremental conductance also has a higher average eciency during real implementation.
Subjects/Keywords Thermoelectric generator; Waste heat recovery; DC-DC converter; single ended primary inductor converter; Maximum power point tracking; Perturb and observe; Incremental conductance
Language en
Country of Publication se
Record ID oai:DiVA.org:kth-109705
Repository diva
Date Indexed 2020-01-03

Sample Search Hits | Sample Images

…22 23 24 25 4 Maximum power point control 27 4.1 MPPT control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 Perturb and observe . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.2 Incremental conductance…

…4.1 4.2 4.3 4.4 Operation of perturb and observe control. . . . . . . . . . . . . . . . Perturbe and observe algorithm flowchart, where k is the sample. . . Incremental conductance algorithm flowchart, where k is the sample. Operation of incremental…

…chapters 2 and 3 describe the TEG and DC-DC converters. Furthermore, chapter 4 gives an overview over MPPT algorithms, mainly the perturb and observe algorithm and the incremental conductance algorithm. Chapter 5 describes the modelling of the TEG that was…

…The recovered energy in kWh, from the Spain driving cycle. . . . . . . . . The complete model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The SEPIC-converter model. . . . . . . . . . . . . . . . . . . . . . . . . . The perturb and…

observe algorithm model. . . . . . . . . . . . . . . . . . . The incremental conductance algorithm model. . . . . . . . . . . . . . . . The mapping model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The SEPIC-converter…

.