Full Record

Author | Vallélian, Sarah Catherine |

Title | Quantitative PAT with unknown ultrasound speed : uncertainty characterization and reconstruction methods |

URL | http://hdl.handle.net/2152/39249 |

Publication Date | 2015 |

Date Accessioned | 2016-07-26 18:48:37 |

Discipline/Department | Mathematics |

University/Publisher | University of Texas – Austin |

Abstract | Quantitative photoacoustic tomography (QPAT) is a hybrid medical imaging modality that combines high-resolution ultrasound tomography with high-contrast optical tomography. The objective of QPAT is to recover certain optical properties of heterogeneous media from measured ultrasound signals, generated by the photoacoustic effect, on the surfaces of the media. Mathematically, QPAT is an inverse problem where we intend to reconstruct physical parameters in a set of partial differential equations from partial knowledge of the solution of the equations. A rather complete mathematical theory for the QPAT inverse problem has been developed in the literature for the case where the speed of ultrasound inside the underlying medium is known. In practice, however, the ultrasound speed is usually not exactly known for the medium to be imaged. Using an approximated ultrasound speed in the reconstructions often yields images which contain severe artifacts. There is little study as yet to systematically investigate this issue of unknown ultrasound speed in QPAT reconstructions. The objective of this dissertation is exactly to investigate this important issue of QPAT with unknown ultrasound speed. The first part of this dissertation addresses the question of how an incorrect ultrasound speed affects the quality of the reconstructed images in QPAT. We prove stability estimates in certain settings which bound the error in the reconstructions by the uncertainty in the ultrasound speed. We also study the problem numerically by adopting a statistical framework and applying tools in uncertainty quantification to systematically characterize artifacts arising from the parameter mismatch. In the second part of this dissertation, we propose an alternative reconstruction algorithm for QPAT which does not assume knowledge of the ultrasound speed map a priori, but rather reconstructs it alongside the original optical parameters of interest using data from multiple illumination sources. We explain the advantage of this simultaneous reconstruction approach compared to the usual two-step approach to QPAT and demonstrate numerically the feasibility of our algorithm. |

Subjects/Keywords | Photoacoustic tomography; Inverse problems; Hybrid inverse problems; Image reconstruction; One-step reconstruction; Numerical optimization; Uncertainty quantification; Internal data; Acoustic wave equation; Diffusion equation |

Contributors | Ren, Kui (advisor); Ghattas, Omar (committee member); Müller, Peter (committee member); Tsai, Yen-Hsi (committee member); Ward, Rachel (committee member) |

Language | en |

Country of Publication | us |

Record ID | handle:2152/39249 |

Repository | texas |

Date Indexed | 2018-10-22 |

Note | [department] Mathematics; |

Sample Images | Cited Works

- [1] M. Agranovsky and P. Kuchment, Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photo acoustic tomography with variable sound speed, Inverse Probl., 23 (2007), p. 2089.
- [2] M. Agranovsky, P. Kuchment, and L. Kunyansky, On reconstruction formulas and algorithms for the TAT and PAT tomography, in Photoacoustic Imaging and Spectroscopy, L. V. Wang, ed., CRC Press, 2009, pp. 89–101.
- [3] M. Agranovsky and E. T. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal., 139 (1996), pp. 383–414.
- [4] D. Álvarez, P. Medina, and M. Moscoso, Fluorescence lifetime imaging from time resolved measurements using a shape-based approach, Opt. Express, 17 (2009), pp. 8843–8855.
- [5] H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, Springer, 2008.
- [6] H. Ammari, E. Bossy, V. Jugnon, and H. Kang, Mathematical modelling in photo-acoustic imaging of small absorbers, SIAM Rev., 52 (2010), pp. 677–695.
- [7] H. Ammari, E. Bretin, J. Garnier, and A. Wahab, Time reversal in attenuating acoustic media, Contemp. Math., 548 (2011), pp. 151– 163.
- [8] H. Ammari, E. Bretin, V. Jugnon, and A. Wahab, Photo-acoustic imaging for attenuating acoustic media, Lecture Notes in Mathematics, 2035 (2011), pp. 53–80.
- [9] H. Ammari, J. Garnier, and L. Giovangigli, Mathematical modeling of fluorescence diffuse optical imaging of cell membrane potential changes, Quarterly of Applied Mathematics, (2012).
- [10] M. Arnst, R. Ghanem, and C. Soize, Identification of bayesian posteriors for coefficients for chaos expansions, J. Comput. Phys., 229 (2010), pp. 3134–3154.
- [11] S. R. Arridge, Optical tomography in medical imaging, Inverse Probl., 15 (1999), pp. R41–R93.
- [12] S. R. Arridge and J. C. Schotland, Optical tomography: forward and inverse problems, Inverse Probl., 25 (2009). 123010.
- [13] G. Bal, Hybrid inverse problems and internal information, in Inside Out: Inverse Problems and Applications, G. Uhlmann, ed., Mathematical Sciences Research Institute Publications, Cambridge University Press, 2012.
- [14] G. Bal, A. Jollivet, and V. Jugnon, Inverse transport theory of photoacoustics, Inverse Probl., 26 (2010). 025011.
- [15] G. Bal and F. Monard, An accurate solver for forward and inverse transport, J. Comput. Phys., 229 (2010), pp. 4952–4979.
- [16] G. Bal and K. Ren, Multi-source quantitative PAT in diffusive regime, Inverse Probl., 27 (2011). 075003.
- [17] G. Bal and K. Ren, On multi-spectral quantitative photoacoustic tomography in diffusive regime, Inverse Probl., 28 (2012). 025010.
- [18] G. Bal and A. Tamasan, Inverse source problems in transport equations, SIAM J. Math. Anal., 39 (2007), pp. 57–76.
- [19] G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics, Inverse Probl., 26 (2010). 085010.
- [20] G. Bal and G. Uhlmann, Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions, Commun. Pure Appl. Math., (2013).
- [21] G. Bao and W. W. Symes, On the sensitivity of hyperbolic equation to the coefficient, Comm. Part. Diff. Eqn., 21 (1996), pp. 395–422.
- [22] P. Beard, Biomedical photoacoustic imaging, Interface Focus, 1 (2011), pp. 602–631.
- [23] T. Bui-Thanh, O. Ghattas, J. Martin, and G. Stadler, A computational framework for infinite-dimensional Bayesian inverse problems Part I: The linearized case with application to global seismic inversion, SIAM Journal on Scientific Computing, 35 (2013), pp. 2494–2523.
- [24] P. Burgholzer, G. J. Matt, M. Haltmeier, and G. Paltauf, Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface, Phys. Rev. E, 75 (2007). 046706.
- [25] P. Burgholzer, H. Roitner, J. Bauer-Marschallinger, H. Grün, T. Berer, and G. Paltauf, Compensation of ultrasound attenuation in photoacoustic imaging, in Acoustic Waves From Microdevices to Helioseismology, InTech, 2011, ch. 9.
- [26] J. Chen, V. Venugopal, and X. Intes, Monte carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates, Biomed. Opt. Express, 2 (2011), pp. 871–886.
- [27] W.-F. Cheong, S. A. Prahl, and A. J. Welch, A review of the optical properties of biological tissues, IEEE J. Quantum Electron., 26 (1990), pp. 2166–2185.
- [28] A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans, Opt. Express, 15 (2007), pp. 6696–6716.
- [29] B. T. Cox, S. R. Arridge, and P. C. Beard, Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity, Inverse Probl., 23 (2007), pp. S95–S112.
- [30] , Estimating chromophore distributions from multiwavelength photoacoustic images, J. Opt. Soc. Am. A, 26 (2009), pp. 443–455.
- [31] B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method, Appl. Opt., 45 (2006), pp. 1866–1875.
- [32] B. T. Cox, J. G. Laufer, and P. C. Beard, The challenges for quantitative photoacoustic imaging, Proc. of SPIE, 7177 (2009). 717713.
- [33] B. T. Cox, T. Tarvainen, and S. R. Arridge, Multiple illumination quantitative photoacoustic tomography using transport and diffusion models, in Tomography and Inverse Transport Theory, G. Bal, D. Finch, P. Kuchment, J. Schotland, P. Stefanov, and G. Uhlmann, eds., vol. 559 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2011, pp. 1–12.
- [34] B. T. Cox and B. E. Treeby, Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media, IEEE Trans. Med. Imag., 29 (2010), pp. 387–396.
- [35] X. L. Deán-Ben, D. Razansky, and V. Ntziachristos, The effects of acoustic attenuation in optoacoustic signals, Phys. Med. Biol., 56 (2011), pp. 6129–48.
- [36] T. Dierkes, O. Dorn, F. Natterer, V. Palamodov, and H. Sieschott, Fréchet derivatives for some bilinear inverse problems, SIAM J. Appl. Math., 62 (2002), pp. 2092–2113.
- [37] Y. Efendiev, T. Y. Hou, and W. Luo, Preconditioning of Markov Chain Monte Carlo simulations using coarse-scale models, SIAM J. Sci. Comput., 28 (2006), pp. 776–803.
- [38] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.
- [39] D. Finch, M. Haltmeier, and Rakesh, Inversion of spherical means and the wave equation in even dimensions, SIAM J. Appl. Math., 68 (2007), pp. 392–412.
- [40] S. K. Finch, D. Patch, and Rakesh., Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal., 35 (2004), pp. 1213–1240.
- [41] M. Fink, G. Montaldo, and M. Tanter, Time reversal acoustics in biomedical engineering, Ann. Rev. Biomed. Eng., 5 (2003), pp. 465–497.
- [42] A. R. Fisher, A. J. Schissler, and J. C. Schotland, Photoacoustic effect for multiply scattered light, Phys. Rev. E, 76 (2007). 036604.
- [43] H. P. Flath, L. C. Wilcox, V. Akçelik, J. Hill, B. van Bloemen Waanders, and O. Ghattas, Fast Algorithms for Bayesian Uncertainty Quantification in Large-Scale Linear Inverse Problems Based on Low-Rank Partial Hessian Approximations, SIAM Journal on Scientific Computing, 33 (2011), pp. 407–432.
- [44] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas, Non-linear model reduction for uncertainty quantification in large-scale inverse problems, International Journal for Numerical Methods in Engineering, 81 (2010), pp. 1581–1608.
- [45] B. Ganapathysubramanian and N. Zabaras, Sparse grid collocation schemes for stochastic natural convection problems, J. Comp. Phys., 225 (2007), pp. 652–685.
- [46] H. Gao, S. Osher, and H. Zhao, Quantitative photoacoustic tomography, in Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographies, H. Ammari, ed., Lecture Notes in Mathematics, Springer, 2012.
- [47] H. Gao and H. Zhao, A fast forward solver of radiative transfer equation, Transport Theor. Stat., 38 (2009), pp. 149–192.
- [48] , Simultaneous reconstruction of absorption and scattering with multiple optical excitations in quantitative photoacoustic tomography via Bregman method, J. Biomed. Opt., 1 (2010), p. 1.
- [49] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2000.
- [50] A. Godavartya, E. M. Sevick-Muraca, and M. J. Eppstein, Three-dimensional fluorescence lifetime tomography, Med. Phys., 32 (2005), pp. 992–1000.
- [51] M. Haltmeier, A mollification approach for inverting the spherical mean Radon transform, SIAM J. Appl. Math., 71 (2011), pp. 1637– 1652.
- [52] M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, Thermoacoustic computed tomography with large planer receivers, Inverse Probl., 20 (2004), pp. 1663–1673.
- [53] M. Haltmeier, T. Schuster, and O. Scherzer, Filtered backprojection for thermoacoustic computed tomography in spherical geometry, Math. Methods Appl. Sci., 28 (2005), pp. 1919–1937.
- [54] C. K. Hayakawa, J. Spanier, and V. Venugopalan, Coupled forward-adjoint monte carlo simulations of radiative transport for the study of optical probe design in heterogeneous tissues, SIAM J. Appl. Math., 68 (2007), pp. 253–270.
- [55] Y. Hristova, Time reversal in thermoacoustic tomography - an error estimate, Inverse Probl., 25 (2009). 055008.
- [56] Y. Hristova, P. Kuchment, and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media, Inverse Probl., 24 (2008). 055006.
- [57] M. Idemen and A. Alkumru, On an inverse source problem connected with photo-acoustic and thermo-acoustic tomographies, Wave Motion, 49 (2012), pp. 595–604.
- [58] V. Isakov, Inverse Problems for Partial Differential Equations, SpringerVerlag, New York, second ed., 2002.
- [59] H. Jiang, Z. Yuan, and X. Gu, Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography., J. Opt. Soc. Am. A, 23 (2006), pp. 878–888.
- [60] X. Jin and L. V. Wang, Thermoacoustic tomography with correction for acoustic speed variations., Phys. Med. Biol., 51 (2006), pp. 6437– 6448.
- [61] J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption., Opt. Express, 19 (2011), pp. 2093– 104.
- [62] J. Jose, R. G. H. Willemink, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, Speed-of-sound compensated photoacoustic tomography for accurate imaging, Med. Phys., 39 (2012).
- [63] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, Springer, New York, 2005.
- [64] C. T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, 1999.
- [65] A. D. Kim and J. B. Keller, Light propagation in biological tissue, J. Opt. Soc. Am. A, 20 (2003), pp. 92–98.
- [66] A. D. Kim and M. Moscoso, Radiative transport theory for optical molecular imaging, Inverse Probl., 22 (2006), pp. 23–42.
- [67] H. K. Kim, M. Flexman, D. Y. Yamashiro, J. Kandel, and A. H. Hielscher, PDE-constrained multispectral imaging of tissue chromophores with the equation of radiative transfer, Biomed. Opt. Express, 1 (2010), pp. 812–824.
- [68] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, second ed., 2011.
- [69] A. Kirsch and O. Scherzer, Simultaneous reconstructions of absorption density and wave speed with photoacoustic measurements, SIAM J. Appl. Math., (2013).
- [70] R. Kowar and O. Scherzer, Photoacoustic imaging taking into account attenuation, Submitted, (2010).
- [71] P. Kuchment, Mathematics of hybrid imaging: A brief review, in The Mathematical Legacy of Leon Ehrenpreis, I. Sabadini and D. Struppa, eds., Springer-Verlag, 2012.
- [72] P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography, Euro. J. Appl. Math., 19 (2008), pp. 191–224.
- [73] , Mathematics of thermoacoustic and photoacoustic tomography, in Handbook of Mathematical Methods in Imaging, O. Scherzer, ed., SpringerVerlag, 2010, pp. 817–866.
- [74] A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, Time resolved fluorescence tomography of turbid media based on lifetime contrast, Opt. Express, 14 (2006), pp. 12255– 12270.
- [75] L. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform, Inverse Probl., 23 (2007), pp. 373–383.
- [76] , A series solution and a fast algorithm for the inversion of the spherical mean Radon transform, Inverse Probl., 23 (2007), pp. S11–S20.
- [77] , Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm, Inverse Probl., 24 (2008). 055021.
- [78] J. Laufer, B. T. Cox, E. Zhang, and P. Beard, Quantitative determination of chromophore concentrations from 2d photoacoustic images using a nonlinear model-based inversion scheme, Appl. Opt., 49 (2010), pp. 1219–1233.
- [79] C. Li and L. Wang, Photoacoustic tomography and sensing in biomedicine, Phys. Med. Biol., 54 (2009), pp. R59–R97.
- [80] C. Lieberman, K. Willcox, and O. Ghattas, Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems, SIAM Journal on Scientific Computing, 32 (2010), pp. 2523–2542.
- [81] T. Lv and T. Zhou, Variational Iterative Algorithms in Photoacoustic Tomography with Variable Sound Speed, J. Comput. Math., 32 (2014), pp. 1–23.
- [82] S. Mallidi, G. P. Luke, and S. Emelianov, Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance, Trends Biotechnol., 29 (2011), pp. 213–221.
- [83] A. V. Mamonov and K. Ren, Quantitative photoacoustic imaging in radiative transport regime, Comm. Math. Sci., 12 (2014), pp. 201–234.
- [84] Y. M. Marzouk and H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys., 228 (2009), pp. 1862–1902.
- [85] R. H. Mayer, J. S. Reynolds, and E. M. Sevick-Muraca, Measurement of fluorescence lifetime in scattering media using frequencydomain photon migration, Appl. Optics, 38 (1999), pp. 4930–4938.
- [86] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
- [87] W. Naetar and O. Scherzer, Quantitative photoacoustic tomography with piecewise constant material parameters, SIAM J. Imaging Sci., 7 (2014), pp. 1755–1774.
- [88] H. N. Najm, Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics, Annual Review of Fluid Mechanics, 41 (2009), pp. 35–52.
- [89] L. V. Nguyen, A family of inversion formulas in thermoacoustic tomography, Inverse Problems in Imaging, 3 (2009), pp. 649–675.
- [90] J. Nocedal and S. J. Wright, Numerical Optimization, SpringerVerlag, New York, 1999.
- [91] L. Oksanen and G. Uhlmann, Photoacoustic and thermoacoustic tomography with an uncertain wave speed, Math. Res. Lett., 21 (2014), pp. 1199–1214.
- [92] G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors, Inverse Probl., 23 (2007), pp. S81–S94.
- [93] , Photoacoustic tomography with integrating area and line detectors, in Photoacoustic Imaging and Spectroscopy, L. V. Wang, ed., CRC Press, 2009, pp. 251–263.
- [94] H. M. Park and T. Y. Yoon, Solution of inverse radiation problems using the Karhunen-Loève Galerkin procedure, J. Quant. Spectrosc. Radiat. Transfer, 68 (2001), pp. 489–506.
- [95] K. J. Parker, M. M. Doyley, and D. J. Rubens, Imaging the elastic properties of tissue: the 20 year perspective, Phys. Med. Biol., 56 (2011).
- [96] S. K. Patch and O. Scherzer, Photo- and thermo- acoustic imaging, Inverse Probl., 23 (2007), pp. S1–S10.
- [97] B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes, J. Biomed. Opt., 9 (2004), pp. 541–552.
- [98] A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio, and T. Tarvainen, A Bayesian approach to spectral quantitative photoacoustic tomography, Inverse Probl., 30 (2014).
- [99] A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio, and T. Tarvainen, Quantitative photoacoustic tomography using illuminations from a single direction, J. Biomed. Opt., 20 (2015), p. 036015.
- [100] J. Qian, P. Stefanov, G. Uhlmann, and H. Zhao, An efficient Neumann-series based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed, SIAM J. Imaging Sci., 4 (2011), pp. 850–883.
- [101] Rakesh, A linearized inverse problem for the wave equation, Comm. Part. Diff. Eqn., 13 (1988), pp. 573–601.
- [102] K. Ren, Recent developments in numerical techniques for transportbased medical imaging methods, Commun. Comput. Phys., 8 (2010), pp. 1–50.
- [103] K. Ren, G. Bal, and A. H. Hielscher, Comparison of frequencydomain transport and diffusion-based reconstructions of small tissue volumes, in Proceedings of the Biomedical Topical Meeting on Biomedical Optics - Diffuse Optical Imaging, Optical Society of America, 2006.
- [104] , Transport- and diffusion-based optical tomography in small domains: A comparative study, Appl. Opt., 46 (2007), pp. 6669–6679.
- [105] K. Ren, H. Gao, and H. Zhao, A hybrid reconstruction method for quantitative photoacoustic imaging, SIAM J. Imag. Sci., 6 (2013), pp. 32– 55.
- [106] K. Ren, R. Zhang, and Y. Zhong, Reconstruction methods in quantitative fluorescence photoacoustic tomography, Preprint, (2015).
- [107] K. Ren and H. Zhao, Imaging heterogeneous media with fluorescence photoacoustic tomography, Submitted, (2013).
- [108] , Quantitative fluorescence photoacoustic tomography, SIAM J. Imag. Sci., 6 (2013), pp. 2024–2049.
- [109] S. Resink, J. Jose, R. G. H. Willemink, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, Multiple passive element enriched photoacoustic computed tomography, Optics Lett., 36 (2011), pp. 2809–11.
- [110] H. Roitner and P. Burgholzer, Efficient modeling and compensation of ultrasound attenuation losses in photoacoustic imaging, Inverse Probl., 27 (2011). 015003.
- [111] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2nd ed., 2003.
- [112] T. Saratoon, T. Tarvainen, B. T. Cox, and S. R. Arridge, A gradient-based method for quantitative photoacoustic tomography using the radiative transfer equation, Inverse Probl., 29 (2013).
- [113] O. Scherzer, Handbook of Mathematical Methods in Imaging, SpringerVerlag, 2010.
- [114] , Handbook of Mathematical Methods in Imaging, Springer-Verlag, New York, 2011.
- [115] R. W. Schoonover and M. A. Anastasio, Compensation of shear waves in photoacoustic tomography with layered acoustic media, J. Opt. Soc. Am. A, 28 (2011), pp. 2091–2099.
- [116] G. Sela, A. Lauri, X. L. Deán-ben, M. Kneipp, V. Ntziachristos, S. Shoham, G. G. Westmeyer, and D. Razansky, Functional optoacoustic neuro-tomography ( FONT ) for whole-brain monitoring of calcium indicators, arXiv preprint: 1501.02450, (2015), pp. 1–4.
- [117] P. Shao, B. Cox, and R. J. Zemp, Estimating optical absorption, scattering, and Grueneisen distributions with multiple-illumination photoacoustic tomography, Appl. Opt., 50 (2011), pp. 3145–3154.
- [118] V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, Fluorescence lifetime imaging by using time gated data acquisition, Appl. Opt., 46 (2007), pp. 7384–7391.
- [119] P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Probl., 25 (2009). 075011.
- [120] , Thermoacoustic tomography arising in brain imaging, Inverse Probl., 27 (2011). 045004.
- [121] P. Stefanov and G. Uhlmann, Instability of the linearized problem in multiwave tomography of recovery both the source and the speed, Inverse Probl. Imag., 7 (2013), pp. 1367–1377.
- [122] P. Stefanov and G. Uhlmann, Recovery of a source term or a speed with one measurement and applications, Trans. AMS, 365 (2013), pp. 5737–5758.
- [123] J. Tang, W. Han, and B. Han, A theoretical study for RTE based parameter identification problems, Inverse Probl., 29 (2013). 095002.
- [124] J. Tittelfitz, Thermoacoustic tomography in elastic media, Inverse Probl., 28 (2012). 055004.
- [125] B. E. Treeby, Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering, J. Biomed. Opt., 18 (2013). 036008.
- [126] B. E. Treeby, J. G. Laufer, E. Z. Zhang, F. C. Norris, M. F. Lythgoe, P. C. Beard, and B. T. Cox, Acoustic attenuation compensation in photoacoustic tomography: Application to high-resolution 3d imaging of vascular networks in mice, in Photons Plus Ultrasound: Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., 2011, p. Y178992Y978992.
- [127] B. E. Treeby, E. Z. Zhang, and B. T. Cox, Photoacoustic tomography in absorbing acoustic media using time reversal, Inverse Probl., 26 (2010). 115003.
- [128] B. E. Treeby, E. Z. Zhang, A. S. Thomas, and B. T. Cox, Measurement of the ultrasound attenuation and dispersion in whole human blood and its components from 0-70MHz, Ultrasound in Medicine and Biology, 37 (2011), pp. 289–300.
- [129] L. V. Wang, Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography, Disease Markers, 19 (2004), pp. 123–138. , Prospects of photoacoustic tomography, Med. Phys., 35 (2008),
- [130] pp. 5758–5767.
- [131] L. V. Wang, Tutorial on photoacoustic microscopy and computed tomography, IEEE J. Sel. Topics Quantum Electron., 14 (2008), pp. 171– 179.
- [132] A. J. Welch and M. J. C. Van-Gemert, Optical-thermal Response of Laser Irradiated Tissue, Plenum Press, New York, 1995.
- [133] R. G. H. Willemink, S. Manohar, J. Jose, K. Slump, F. van der Heijden, and T. G. van Leeuwen, Simultaneous imaging of ultrasound attenuation, speed of sound, and optical absorption in a photoacoustic setup, in SPIE 7265, Medical Imaging 2009: Ultrasonic Imaging and Signal Processing, S. A. McAleavey and J. D’hooge, eds., vol. 7265, 2009, p. 72650J.
- [134] R. G. H. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements, in SPIE 6920, Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, S. A. McAleavey and J. D’hooge, eds., vol. 6920, 2008, p. 692013.
- [135] M. Xu and L. Wang, Universal back-projection algorithm for photoacoustic computed tomography, Phys. Rev. E, 71 (2005). 016706.
- [136] M. Xu and L. V. Wang, Photoacoustic imaging in biomedicine, Rev. Sci. Instr., 77 (2006). 041101.
- [137] Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, Reconstructions in limited view thermoacoustic tomography, Med. Phys., 31 (2004). 724-733.
- [138] M. Yamamoto, Well-posedness of an inverse hyperbolic problem by the Hilbert uniqueness method, J. Inverse Ill-Posed Probl., 2 (1994), pp. 349– 368.
- [139] M. Yamamoto, Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method, Inverse Probl., 11 (1995), pp. 481–496.
- [140] L. Yao, Y. Sun, and H. Jiang, Transport-based quantitative photoacoustic tomography: simulations and experiments, Phys. Med. Biol., 55 (2010), pp. 1917–1934.
- [141] C. Yoon, J. Kang, S. Han, Y. Yoo, T.-K. Song, and J. H. Chang, Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation, Opt. Express, 20 (2012), pp. 3082–3090.
- [142] Z. Yuan and H. Jiang, Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography, Optics Lett., 34 (2009), pp. 1714– 1716.
- [143] Z. Yuan, Q. Zhang, and H. Jiang, Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography., Opt. Express, 14 (2006), pp. 6749–6754.
- [144] R. J. Zemp, Quantitative photoacoustic tomography with multiple optical sources, Appl. Opt., 49 (2010), pp. 3566–3572.
- [145] J. Zhang and M. A. Anastasio, Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography, Proc. SPIE, 6086 (2006), p. 608619.
- [146] J. Zhang, K. Wang, Y. Yang, and M. A. Anastasio, Simultaneous Reconstruction of Speed of Sound and Optical Absorption Properties in Photoacoustic Tomography via a Time-Domain Iterative Algorithm, in SPIE 6856, Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, A. A. Oraevsky and L. V. Wang, eds., vol. 6856, Feb. 2008.