Full Record

New Search | Similar Records

Author
Title Systematic Approach to Compare the Inflammatory Response of Liver Cell Culture Systems Exposed to Silver, Copper, and Nickel Nanoparticles
URL
Publication Date
Date Accessioned
Degree MS
Discipline/Department Toxicology
Degree Level masters
University/Publisher Texas A&M University
Abstract Although nano-sized metal colloids are used in industrial and medicinal applications, little is known about the potential liver toxicity of these materials after occupational or intentional exposures. To begin to resolve some outstanding hepatotoxicity concerns, the inflammatory response of hepatocytes after exposure to metal colloids was assessed. Four ~30-nm-sized metal colloids, including silver (nano-Ag), copper (nano-Cu) and nickel (nano-Ni) were examined in an effort to understand the induced cytokine expression in a murine liver cell line (AML12). Here we also utilized another system, co-cultures of hepatocytes, Kupffer’s cells, and lymphocytes isolated from C57BL6 mice. Cells were exposed to the materials over dose-response (0.1mg/L to 1000mg/L) and time-dependent (4 h, 48 h, and 1-week) studies. Cytotoxicity was measured via metabolism of resazurin and validated via MTT assay and cell counts. Inflammatory response was determined by cytokine profiles (TNF-a and IL-6), as well as by mRNA and protein expression of heat shock protein (Hsp70). Results from cells exposed to nano-Ag to doses of up to 100mg/L exhibited no significant changes in cytotoxicity, IL-6, or TNF-a production, or Hsp70 expression. Both nano-Cu and nano-Ni exposed cells exhibited decreased metabolism, increased Hsp70 induction, and increased inflammatory responses (IL-6 and TNF-a). Dynamic light scattering and electron microscopy were used to characterize particle size and surface charge. All three metal colloidal systems demonstrated different particle size distributions, agglomerated sizes, and surface zeta potentials. Furthermore, each metal colloid system elicited different inflammatory biomarker responses and stress protein expression.
Subjects/Keywords Nanoparticles; Inflammation; Cytokines; Cellular Uptake; Cytotoxicity; Co-culture
Contributors Sayes, Christie M. (advisor); Safe, Stephen (committee member); Tian, Yanan (committee member); Burghardt, Robert (committee member)
Language en
Country of Publication us
Record ID handle:1969.1/ETD-TAMU-2010-08-8414
Repository tamu
Date Indexed 2020-08-12
Grantor Texas A&M University
Issued Date 2011-10-21 00:00:00

Sample Images

.