Full Record

New Search | Similar Records

Author
Title Development of Ferrite-coated Soft Magnetic Composites: Correlation of Microstructure to Magnetic Properties
URL
Publication Date
University/Publisher Drexel University
Abstract

Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical milling and analyzed for magnetic core loss dependence on particle size, cure temperature, and microstructure of both coating and core powder. We present a significant increase in core loss related to eddy current loss from coating particles sintering and Fe grain growth. Lastly, a more resistive coating material, NiZnCu-ferrite, is applied for improved resistivity, which leads to lower eddy current loss and improved magnetic performance. By highlighting the importance of microstructure and composition on magnetic properties, a closer look at interfacial features and local microstrain are necessary and accomplished in this work. Future developments of ferrite-based SMC coatings are required to transform the use of electromagnetic devices in today's society.

Ph.D., Materials Science and Engineering  – Drexel University, 2017

Subjects/Keywords Materials science; Electron microscopy; Magnetic materials; Powder metallurgy
Contributors Taheri, Mitra; College of Engineering
Language en
Country of Publication us
Format xv, 147 leaves
Record ID handle:1860/idea:7559
Other Identifiers idea:7559
Repository drexel
Date Retrieved
Date Indexed 2019-03-13

Sample Images

.