Full Record

New Search | Similar Records

Title Adhesion mechanisms of nano-particle silver to electronics packaging materials
Publication Date
Date Accessioned
Degree PhD
Discipline/Department Mechanical Engineering
Degree Level doctoral
University/Publisher Georgia Tech
Abstract To reduce electronics packaging lead time and potentially to reduce manufacturing cost, an innovative packaging process targeting rapid package prototyping (RPP) has been developed. The developed RPP process, which is based on a data-driven chip-first approach, provides electrical functionality as well as form factors for micro-systems packages. The key component of the RPP process is the nano-particle silver (NPS) interconnect. However, NPS has not yet been adequately proven for use in electronics packaging applications. Moreover, its adhesion to electronics packaging materials such as polyimide, benzocyclobutene (BCB), copper, and aluminum is found to be weak. Thus, improving the adhesion strength of NPS will be a key issue for reliable package prototypes with NPS interconnects. In this research, the adhesion of NPS to substrate materials is found to be attributed to particle adhesion and more specifically, van der Waals forces. An adhesion model based on the van der Waals force is suggested in order to predict NPS adhesion strength to packaging materials. A new adhesion test method that is based on a die shear test and a button shear test is developed to validate the NPS adhesion prediction model. The newly developed adhesion test method is generic in nature and can be extended to other thin films' adhesion tests. The NPS adhesion model provides a general and explicit relation between NPS tensile bond strength and adhesion factors such as substrate hardness, adhesion distance, van der Waals constant, and particle diameter. The NPS adhesion model is verified as a first order adhesion model using experimental data from seventeen packaging materials. Substrate hardness is identified as a primary factor in NPS adhesion. Adhesion distance and van der Waals constant are also significant in organic and inorganic materials. Diffusion or other interfacial reaction between NPS and metal substrates such as copper and silver seems to exist. Finally, guidelines to improve the adhesion strength of NPS are suggested based on the adhesion model and on external adhesion factors such as Silane coupling agents and plasma treatment.
Subjects/Keywords Adhesion modeling; Adhesion mechanisms; Adhesion; Nano-particle silver; Electronics packaging; Adhesion; Nanoparticles; Silver; Electronic packaging; Rapid prototyping
Contributors Daniel F. Baldwin (Committee Chair)
Country of Publication us
Record ID handle:1853/31730
Repository gatech
Date Indexed 2020-05-13
Issued Date 2009-08-28 00:00:00
Note [degree] Ph.D.; [advisor] Committee Chair: Daniel F. Baldwin;

Sample Search Hits | Sample Images

…particle silver film for electronics packaging applications. A motivation to the thesis is presented in Chapter 2. The focus of this chapter is to introduce the newly developed rapid package prototyping technology and the adhesion issue of nano-particle…

ADHESION MECHANISMS OF NANO-PARTICLE SILVER TO ELECTRONICS PACKAGING MATERIALS A Thesis Presented to Th e Academi c Facu l t y By Sung Chul Joo In Partial Ful fill ment of t h e R equiremen ts for the Degree Doctor of Philosophy in Mechanical…

…Engineering R GI A• INSTI TU T F•T S ER V I CE AN D L L O •O F•TECHN HE•G •O EO E P R O G R E SS O GY • 1885 •S EA Georgia Institute of Technology December, 2009 Copyright © 2009 by Sung Chul Joo ADHESION MECHANISMS OF NANO-PARTICLE…

…Particle Metals (NPM) 23 2.3 Nano-Particle Silver (NPS) Adhesion25 iv CHAPTER 3…

ADHESION MECHANISMS 28 3.1 General Adhesion Mechanisms 28 3.1.1 Physical Adsorption…

…28 3.1.2 Electrostatic Force30 3.1.3 Particle Adhesion 31 3.1.4…

…35 3.1.7 Paint Adhesion and Others 40 3.2 Sintering Mechanisms42 3.3 Relevant…

Adhesion Mechanism of NPS 44 3.4 Plausible Adhesion Factors of NPS 47 CHAPTER 4 ADHESION EXPERIMENTS…