Full Record

Author | Wang, Bin |

Title | Balancing domain decomposition by constraints algorithms for incompressible Stokes equations with nonconforming finite element discretizations |

URL | http://hdl.handle.net/1808/27005 |

Publication Date | 2017 |

Date Accessioned | 2018-10-24 22:12:11 |

Degree | PhD |

Discipline/Department | Mathematics |

Degree Level | doctoral |

University/Publisher | University of Kansas |

Abstract | Hybridizable Discontinuous Galerkin (HDG) is an important family of methods, which combine the advantages of both Discontinuous Galerkin in terms of flexibility and standard finite elements in terms of accuracy and efficiency. The impact of this method is partly evidenced by the prolificacy of research work in this area. Weak Galerkin (WG) is a relatively newly proposed method by introducing weak functions and generalizing the differential operator for them. This method has also drawn remarkable interests from both numerical practitioners and analysts recently. HDG and WG are different but closely related. BDDC algorithms are developed for numerical solution of elliptic problems with both methods. We prove that the optimal condition number estimate for BDDC operators with standard finite element methods can be extended to the counterparts arising from the HDG and WG methods, which are nonconforming finite element methods. Numerical experiments are conducted to verify the theoretical analysis. Further, we propose BDDC algorithms for the saddle point system arising from the Stokes equations using both HDG and WG methods. By design of the preconditioner, the iterations are restricted to a benign subspace, which makes the BDDC operator effectively positive definite thus solvable by the conjugate gradient method. We prove that the algorithm is scalable in the number of subdomains with convergence rate only dependent on subdomain problem size. The condition number bound for the BDDC preconditioned Stokes system is the same as the optimal bound for the elliptic case. Numerical results confirm the theoretical analysis. |

Subjects/Keywords | Mathematics; BDDC; domain decomposition; hybridizable discontinuous Galerkin; saddle point problems; Stokes; weak Galerkin |

Contributors | Tu, Xuemin (advisor); Huang, Weizhang (cmtemember); Van Vleck, Erik (cmtemember); Xu, Hongguo (cmtemember); Wang, Z.J. (cmtemember) |

Language | en |

Rights | Copyright held by the author. openAccess |

Country of Publication | us |

Record ID | handle:1808/27005 |

Repository | ku |

Date Retrieved | 2020-08-04 |

Date Indexed | 2020-08-13 |

Issued Date | 2017-12-31 00:00:00 |

Sample Images | Cited Works

- Antonietti, P. F. & Ayuso, B. (2007). Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case. ESAIM: M2AN, 41(1), 21–54.
- Antonietti, P. F. & Ayuso, B. (2008). Multiplicative Schwarz methods for discontinuous Galerkin approximations of elliptic problems. ESAIM: M2AN, 42(3), 443–469.
- Antonietti, P. F. & Ayuso, B. (2009). Two-level Schwarz preconditioners for super penalty discontinuous Galerkin methods. Commun. Comput. Phys., 5, 398–412.
- Arnold, D. N. & Brezzi, F. (1985). Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 19(1), 7–32.
- Arnold, D. N., Brezzi, F., Cockburn, B., & Marini, D. (2000). Discontinuous Galerkin methods for elliptic problems. In B. Cockburn, G. E. Karniadakis, & C.-W. Shu (Eds.), Discontinuous Galerkin Methods: Theory, Computation and Applications (pp. 89–101).
- Berlin, Heidelberg: Springer Berlin Heidelberg.
- Arnold, D. N., Brezzi, F., Cockburn, B., & Marini, L. D. (2002). Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, 39(5), 1749–1779. Ayuso de Dios, B. & Zikatanov, L. (2009). Uniformly convergent iterative methods for discontinuous Galerkin discretizations. Journal of Scientific Computing, 40(1), 4–36. Babuška, I. & Zlámal, M. (1973). Nonconforming elements in the finite element method with penalty. SIAM Journal on Numerical Analysis, 10(5), 863–875.
- Barker, A. T., Brenner, S. C., Park, E.-H., & Sung, L.-Y. (2011). Two-level additive Schwarz preconditioners for a weakly over-penalized symmetric interior penalty method. Journal of Scientific Computing, 47(1), 27–49. Beirão da Veiga, L., Cho, D., Pavarino, L. F., & Scacchi, S. (2013). BDDC preconditioners for isogeometric analysis. Mathematical Models and Methods in Applied Sciences, 23(06), 1099–1142. Beirão da Veiga, L., Pavarino, L. F., Scacchi, S., Widlund, O. B., & Zampini, S. (2014). Isogeometric BDDC preconditioners with deluxe scaling. SIAM Journal on Scientific Computing, 36(3), A1118–A1139. Bică, I. (1997). Iterative Substructuring Algorithms for the p-version Finite Element Method for Elliptic Problems. PhD thesis, Department of Computer Science, Courant Institute, New York University, New York, NY, USA. Bică, I. (1998). Nonoverlapping domain decomposition algorithms for the p-version finite element method for elliptic problems. Contemporary Mathematics, 218, 231–237.
- Braess, D. (2007). Finite Elements: Theory, fast solvers, and applications in solid mechanics, 3rd edn. Cambridge: Cambridge University Press.
- Bramble, J. H. & Pasciak, J. E. (1989). A domain decomposition technique for Stokes problems. Applied Numerical Mathematics, 6, 251–261.
- Brenner, S. C. (1992). A multigrid algorithm for the lowest-order Raviart-Thomas mixed triangular finite element method. SIAM Journal on Numerical Analysis, 29(3), 647–678.
- Brenner, S. C., Park, E.-H., & Sung, L.-Y. (2013). A balancing domain decomposition by constraints preconditioner for a weakly over-penalized symmetric interior penalty method. Numerical Linear Algebra with Applications, 20(3), 472–491.
- Brenner, S. C. & Scott, R. (2008). The Mathematical Theory of Finite Element Methods. Springer-Verlag New York.
- Brezzi, F., Douglas, Jr., J., & Marini, L. D. (1985). Two families of mixed finite elements for second order elliptic problems. Numer. Math., 47(2), 217–235.
- Brezzi, F. & Fortin, M. (1991). Mixed and Hybrid Finite Element Methods. New York, NY, USA: Springer-Verlag New York, Inc.
- Canute, C., Pavarino, L. F., & Pieri, A. B. (2014). BDDC preconditioners for continuous and discontinuous Galerkin methods using spectral/hp elements with variable local polynomial degree. IMA Journal of Numerical Analysis, 34(3), 879.
- Chen, L., Wang, J., Wang, Y., & Ye, X. (2015). An auxiliary space multigrid preconditioner for the weak Galerkin method. Computers & Mathematics with Applications, 70(4), 330– 344.
- Chen, Z. (1994). Equivalence between and multigrid algorithms for mixed and nonconforming methods for second order elliptic problems. East-West J. Numer. Math.
- Chung, E. T., Kim, H. H., & Widlund, O. B. (2013). Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method. SIAM Journal on Numerical Analysis, 51(1), 47–67.
- Cockburn, B. (2010). The hybridizable discontinuous Galerkin methods. In Proceedings of the International Congress of Mathematicians. Hyderabad, India.
- Cockburn, B., Dong, B., & Guzmán, J. (2008). A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comp., 77, 1887–1916.
- Cockburn, B., Dubois, O., Gopalakrishnan, J., & Tan, S. (2014). Multigrid for an HDG method. IMA J. Numer. Anal., 34(4), 1386–1425.
- Cockburn, B., Gopalakrishnan, J., & Lazarov, R. (2009a). Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis, 47(2), 1319–1365.
- Cockburn, B., Gopalakrishnan, J., Nguyen, N., Peraire, J., & Sayas, F.-J. (2011). Analysis of HDG methods for Stokes flow. Mathematics of Computation, 80(274), 723–760.
- Cockburn, B., Guzmán, J., & Wang, H. (2009b). Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comp., 78, 1–24.
- Diosady, L. T. & Darmofal, D. L. (2012). A unified analysis of balancing domain decomposition by constraints for discontinuous Galerkin discretizations. SIAM Journal on Numerical Analysis, 50(3), 1695–1712.
- Dohrmann, C. R. (2003). A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci Comput, 25(1), 246–258.
- Dohrmann, C. R. (2007a). An approximate BDDC preconditioner. Numerical Linear Algebra with Applications, 14(2), 149–168.
- Dohrmann, C. R. (2007b). Preconditioning of saddle point systems by substructuring and a penalty approach. In O. B. Widlund & D. E. Keyes (Eds.), Domain Decomposition Methods in Science and Engineering XVI (pp. 53–64). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Dryja, M., Galvis, J., & Sarkis, M. (2007). BDDC methods for discontinuous Galerkin discretization of elliptic problems. Journal of Complexity, 23(4), 715 – 739.
- Dryja, M., Galvis, J., & Sarkis, M. (2012). Neumann-Neumann methods for a DG discretization on geometrically nonconforming substructures. Numerical Methods for Partial Differential Equations, 28(4), 1194–1226.
- Dryja, M., Galvis, J., & Sarkis, M. (2013). A FETI-DP preconditioner for a composite finite element and discontinuous Galerkin method. SIAM Journal on Numerical Analysis, 51(1), 400–422.
- Feng, X. & Karakashian, O. A. (2001). Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM Journal on Numerical Analysis, 39(4), 1343–1365.
- Feng, X. & Karakashian, O. A. (2005). Two-level non-overlapping Schwarz preconditioners for a discontinuous Galerkin approximation of the biharmonic equation. Journal of Scientific Computing, 22(1), 289–314.
- Goldfeld, P., Pavarino, L. F., & Widlund, O. B. (2003). Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity. Numerische Mathematik, 95(2), 283–324.
- Gopalakrishnan, J. (2003). A Schwarz preconditioner for a hybridized mixed method. Comput. Methods Appl. Math., 3(1), 116–134.
- Gopalakrishnan, J. & Kanschat, G. (2003a). Application of unified DG analysis to preconditioning DG methods. In K. Bathe (Ed.), Computational Fluid and Solid Mechanics (pp. 1943–1945). Amsterdam: Elsevier.
- Gopalakrishnan, J. & Kanschat, G. (2003b). A multilevel discontinuous Galerkin method. Numerische Mathematik, 95(3), 527–550.
- Gopalakrishnan, J. & Tan, S. (2009). A convergent multigrid cycle for the hybridized mixed method. Numerical Linear Algebra with Applications, 16(9), 689–714.
- Hoppe, R. H. (2016). Finite element methods. https://www.math.uh.edu/~rohop/Fall_ 16/downloads/Chapter3.pdf.
- Kim, H. H., Chung, E. T., & Lee, C. S. (2014). A BDDC algorithm for a class of staggered discontinuous Galerkin methods. Computers & Mathematics with Applications, 67(7), 1373 – 1389.
- Kim, H. H. & Tu, X. (2009). A three-level BDDC algorithm for mortar discretizations. SIAM Journal on Numerical Analysis, 47(2), 1576–1600.
- Klawonn, A. & Rheinbach, O. (2007). Inexact FETI-DP methods. International Journal for Numerical Methods in Engineering, 69(2), 284–307.
- Klawonn, A. & Widlund, O. B. (2006). Dual-primal FETI methods for linear elasticity. Comm. Pure Appl. Math., 59(11), 1523–1572.
- Kraus, J. K. & Tomar, S. K. (2008a). A multilevel method for discontinuous Galerkin approximation of three-dimensional anisotropic elliptic problems. Numerical Linear Algebra with Applications, 15(5), 417–438.
- Kraus, J. K. & Tomar, S. K. (2008b). Multilevel preconditioning of two-dimensional elliptic problems discretized by a class of discontinuous Galerkin methods. SIAM Journal on Scientific Computing, 30(2), 684–706.
- Lasser, C. & Toselli, A. (2003). An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems. Math. Comp., 72, 1215–1238.
- Li, J. (2005). A dual-primal FETI method for incompressible Stokes equations. Numerische Mathematik, 102(2), 257–275.
- Li, J. & Tu, X. (2013). A nonoverlapping domain decomposition method for incompressible Stokes equations with continuous pressures. SIAM Journal on Numerical Analysis, 51(2), 1235–1253.
- Li, J. & Widlund, O. B. (2006a). BDDC algorithms for incompressible Stokes equations. SIAM J. Numer. Anal., 44(6), 2432–2455.
- Li, J. & Widlund, O. B. (2006b). FETI-DP, BDDC, and block Cholesky methods. Int. J. Numer. Meth. Engng., 66(2), 250–271.
- Lin, G., Liu, J., Mu, L., & Ye, X. (2014). Weak galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity. Journal of Computational Physics, 276, 422 – 437.
- Mandel, J. & Dohrmann, C. R. (2003). Convergence of a balancing domain decomposition by constraints and energy minimization. Numerical Linear Algebra with Applications, 10(7), 639–659.
- Mandel, J., Dohrmann, C. R., & Tezaur, R. (2005). An algebraic theory for primal and dual substructuring methods by constraints. Applied Numerical Mathematics, 54(2), 167–193.
- Mu, L., Wang, J., & Ye, X. (2014a). A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods. Journal of Computational Physics, 273, 327 – 342.
- Mu, L., Wang, J., & Ye, X. (2014b). Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numerical Methods for Partial Differential Equations, 30(3), 1003–1029.
- Mu, L., Wang, J., & Ye, X. (2015a). A new weak Galerkin finite element method for the Helmholtz equation. IMA Journal of Numerical Analysis, 35(3), 1228.
- Mu, L., Wang, J., & Ye, X. (2015b). A weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math., 285(C), 45–58.
- Mu, L., Wang, J., Ye, X., & Zhang, S. (2015c). A weak Galerkin finite element method for the Maxwell equations. J. Sci. Comput., 65(1), 363–386. Málek, J. & Strakoš, Z. (2015). Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs. Philadelphia : SIAM, Society for Industrial and Applied Mathematics.
- Nguyen, N., Peraire, J., & Cockburn, B. (2010). A hybridizable discontinuous Galerkin method for Stokes flow. Computer Methods in Applied Mechanics and Engineering, 199(9– 12), 582–597.
- Pavarino, L. & Scacchi, S. (2016). Isogeometric block FETI-DP preconditioners for the Stokes and mixed linear elasticity systems. Computer Methods in Applied Mechanics and Engineering, 310, 694 – 710.
- Pavarino, L. F. & Widlund, O. B. (2002). Balancing Neumann-Neumann methods for incompressible Stokes equations. Communications on Pure and Applied Mathematics, 55(3), 302–335.
- Raviart, P. A. & Thomas, J. M. (1977). A mixed finite element method for 2-nd order elliptic problems. In I. Galligani & E. Magenes (Eds.), Mathematical Aspects of Finite Element Methods: Proceedings of the Conference Held in Rome, December 10–12, 1975 (pp. 292–315). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Reed, W. H. & Hill, T. R. (1973). Triangular mesh methods for the neutron transport equation. In Proceedings of the American Nuclear Society, number LA-UR–73-479; CONF730414–2. Schöberl, J. & Lehrenfeld, C. (2013). Domain decomposition preconditioning for high order hybrid discontinuous Galerkin methods on tetrahedral meshes. In T. Apel & O. Steinbach (Eds.), Advanced Finite Element Methods and Applications (pp. 27–56). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Toselli, A. & Widlund, O. B. (2005). Domain Decomposition Methods - Algorithms and Theory, volume 34 of Springer Series in Computational Mathematics. Berlin, Heidelberg, New York: Springer.
- Tu, X. (2002). Enhanced singular function mortar finite element methods. Master’s thesis, Worcester Polytechnic Institute, Worcester, MA.
- Tu, X. (2005). A BDDC algorithm for a mixed formulation of flow in porous media. Electron. Trans. Numer. Anal., 20, 164–179.
- Tu, X. (2006). BDDC Domain Decomposition Algorithms: Methods with Three Levels and for Flow in Porous Media. PhD thesis, Department of Computer Science, Courant Institute, New York University, New York, NY, USA.
- Tu, X. (2007a). A BDDC algorithm for flow in porous media with a hybrid finite element discretization. Electron. Trans. Numer. Anal., 26, 146–160.
- Tu, X. (2007b). Three-level BDDC. In O. B. Widlund & D. E. Keyes (Eds.), Domain Decomposition Methods in Science and Engineering XVI (pp. 437–444). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Tu, X. (2007c). Three-level BDDC in three dimensions. SIAM Journal on Scientific Computing, 29(4), 1759–1780.
- Tu, X. (2007d). Three-level BDDC in two dimensions. Int. J. Numer. Meth. Engng., 69, 33–59.
- Tu, X. (2011). A three-level BDDC algorithm for a saddle point problem. Numerische Mathematik, 119(1), 189–217.
- Tu, X. & Li, J. (2013). A unified dual-primal finite element tearing and interconnecting approach for incompressible Stokes equations. International Journal for Numerical Methods in Engineering, 94(2), 128–149.
- Tu, X. & Li, J. (2014). A FETI-DP algorithm for incompressible Stokes equations with continuous pressures. In J. Erhel, M. J. Gander, L. Halpern, G. Pichot, T. Sassi, & O. Widlund (Eds.), Domain Decomposition Methods in Science and Engineering XXI (pp. 157–165). Cham: Springer International Publishing.
- Tu, X. & Li, J. (2015). A FETI-DP type domain decomposition algorithm for threedimensional incompressible Stokes equations. SIAM Journal on Numerical Analysis, 53(2), 720–742.
- Tu, X. & Wang, B. (2016). A BDDC algorithm for second order elliptic problems with hybridizable discontinuous Galerkin discretizations. Electron. Trans. Numer. Anal., 45, 354–370.
- Tu, X. & Wang, B. (2017a). A BDDC algorithm for Stokes problems with hybridizable discontinuous Galerkin discretizations. In preparation.
- Tu, X. & Wang, B. (2017b). A BDDC algorithm for the Stokes problem with weak Galerkin discretizations. In preparation.
- Tu, X. & Wang, B. (2017c). A BDDC algorithm for weak Galerkin discretizations. In C.-O.
- Lee, X.-C. Cai, D. E. Keyes, H. H. Kim, A. Klawonn, E.-J. Park, & O. B. Widlund (Eds.), Domain Decomposition Methods in Science and Engineering XXIII (pp. 269–276). Cham: Springer International Publishing.
- Wang, J. & Ye, X. (2013). A weak Galerkin finite element method for second-order elliptic problems. Journal of Computational and Applied Mathematics, 241, 103–115.
- Wang, J. & Ye, X. (2014). A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comp., 83, 2101–2126.
- Wang, J. & Ye, X. (2016). A weak Galerkin finite element method for the Stokes equations. Advances in Computational Mathematics, 42(1), 155–174.
- Widlund, O. (2011). Introduction to the design and theory of domain decomposition algorithms a tutorial given on February 6, 2011 at UCSD. https://www.cs.nyu.edu/ widlund/SD_rev_tutorial.pdf. Šístek, J., Sousedík, B., Burda, P., Mandel, J., & Novotný, J. (2011). Application of the parallel BDDC preconditioner to the Stokes flow. Computers & Fluids, 46(1), 429 – 435. 10th ICFD Conference Series on Numerical Methods for Fluid Dynamics (ICFD 2010). Appendix A Shape Regularity Assumptions of the Mesh Let Th be a shape-regular tessellation of Ω with polygons in 2D and polyhedra in 3D. We denote the element in Th by T , the diameter of T by hT , and the area/volume of T by |T |. The mesh size is characterized by h := maxT ∈Th hT . Define Fh be the set of edges/faces of elements T ∈ Th . Fhi and Fh∂ are subsets of Fh , which consists of domain interior and boundary edges, respectively. We denote by |e| the length/area of e and he the diameter of the edge/face in Fh . The following shape regularity assumptions are needed for the finite element partition in order to have the desired approximation properties in the weak Galerkin finite element space. • There exist positive constants %T and %e such that %T hdT ≤ |T |, %e hed−1 ≤ |e|, ∀T ∈ Th , e ∈ Fh . Figure A.1: An example of a shape-regular polygonal element ABCDE • There exists a positive constant κ such that κhT ≤ he , ∀T ∈ Th , e ∈ Fh . • Assume the mesh elements have linear edges/faces. For each T ∈ Th , e ∈ Fh , there exists a pyramid P (e, T, Ae ) contained in T with its base e and apex Ae . The height of the pyramid is given by σe hT with σe ≥ σ∗ > 0 for some fixed positive number σ∗ . Besides, the angle between the vector xe − Ae for any xe ∈ e, and the outward normal direction of e is strictly acute. • Assume that each T ∈ Th has a circumscribing simplex S(T ) that is shape regular and has a diameter hS(T ) ≤ γ∗ hT with γ∗ being a positive constant independent of T . Further, each circumscribed simplex S(T ) intersects with a small and fixed number of such simplices for all other T ∈ Th . Figure A.1 illustrates a shape regular polygonal element. Under the above shape regularity assumptions of the mesh, we have the trace and inverse inequalities (1.5.3) and (1.5.4); see(Wang & Ye, 2014) for details. Appendix B Lagrange Element We used the Lagrange triangle in the simulation. The nodal basis functions are tabulated below. Table B.1: Nodal basis {φ1 , φ2 , ..., φk } of shape function space Linear Lagrange triangle Quadratic Lagrange triangle φ1 = 1 − ξ − η φ2 = ξ φ3 = η φ1 = (1 − ξ − η)(1 − 2ξ − 2η) φ2 = ξ(2ξ − 1) φ3 = η(2η − 1) φ4 = 4ξη φ5 = 4η(1 − ξ − η) φ6 = 4ξ(1 − ξ − η) More details can be found in (Brenner & Scott, 2008).