Full Record

Author | Fu, Yingying |

Title | Low Power Circuit Topologies for Digital-to-analog Converters with a Mm-wave Sampling Clock |

URL | http://hdl.handle.net/1807/69080 |

Publication Date | 2015 |

Date Available | 2015-01-01 00:00:00 |

Degree Level | masters |

University/Publisher | University of Toronto |

Abstract | This thesis describes the design of an 8-bit, 75GS/s, full-rate, low-power DAC in 55nm SiGe BiCMOS process. This is the highest sampling frequency (75GHz) broadband DAC to the best of the author's knowledge. It has an output swing of 1.2Vppd, which is sufficient to directly drive high performance VCSELs for short-reach data center communication links. The low power circuit topologies minimize the power consumption of the DAC to M.A.S. |

Subjects/Keywords | DAC; 0544 |

Contributors | Voinigescu, Sorin; Electrical and Computer Engineering |

Country of Publication | ca |

Record ID | handle:1807/69080 |

Repository | toronto-thes |

Date Retrieved | 2017-12-19 |

Date Indexed | 2017-12-19 |

Sample Images | Cited Works

- [1] Ciena. 5400 Family - Features. Available at: http://www.ciena.com/products/ 5400/tab/features/.
- [2] Wikipedia. 100Gb Ethernet. 100-gigabit_Ethernet. Available at: http://en.wikipedia.org/wiki/
- [3] Finisar presentation. Optical transceivers for 100GE. Available at: http://www.finisar.com/sites/default/files/pdf/Optical_Transceivers_ For_100GE.pdf.
- [4] K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle. 100G and beyond with digital coherent signal processing. IEEE Communications Magazine, 48(7):62– 69, July 2010.
- [5] A. Balteanu, P. Schvan, and S.P. Voinigescu. A 6-bit segmented RZ DAC architecture with up to 50-GHz sampling clock and 4 vpp differential swing. In Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, pages 1–3, June 2012.
- [6] A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin. 42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT. Electronics Letters, 47(6):389– 390, March 2011.
- [7] M. Nagatani, H. Nosaka, S. Yamanaka, K. Sano, and K. Murata. An ultrahighspeed low-power DAC using InP HBTs for multi-level optical transmission systems. In 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pages 1–4, 2010.
- [8] P. Schvan, D. Pollex, and T. Bellingrath. A 22GS/s 6b DAC with integrated digital ramp generator. In Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International, pages 122–588 Vol. 1, 2005.
- [9] S. Yamanaka, Takayuki Kobayashi, Akihide Sano, Hiroji Masuda, E. Yoshida, Yutaka Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka. 11 x 171 gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC. In 2010 36th European Conference and Exhibition on Optical Communication (ECOC), pages 1–3, September 2010.
- [10] D.M. Kuchta, C.L. Schow, A.V. Rylyakov, J.E. Proesel, F.E. Doany, C. Baks, B.H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum. A 56.1Gb/s NRZ modulated 850nm VCSEL-based optical link. In Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013, pages 1–3, March 2013.
- [11] Y.M. Greshishchev, D. Pollex, Shing-Chi Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan. A 56GS/S 6b DAC in 65nm CMOS with 256 x 6b memory. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, pages 194–196, 2011.
- [12] Hao Huang, J. Heilmeyer, M. Grozing, and M. Berroth. An 8-bit 100-GS/s distributed DAC in 28-nm CMOS. In 2014 IEEE Radio Frequency Integrated Circuits Symposium, pages 65–68, June 2014.
- [13] C. Laperle and M. O’Sullivan. Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers. Journal of Lightwave Technology, 32(4):629–643, February 2014.
- [14] Tony Chan. Carusone. Analog integrated circuit design. John Wiley & Sons, Hoboken, NJ, 2012.
- [15] Tektronix. Application note: High-speed DACs. Available at: http://www.tek. com/document/application-note/high-speed-dacs.
- [16] Texas Instruments. Application report: High Speed, Digital to Analog Converters Basics. Available at: http://www.ti.com/lit/an/slaa523a/slaa523a.pdf.
- [17] Behzad. Razavi. Principles of data conversion system design. IEEE Press, New York, 1995.
- [18] A. Van Den Bosch, M.A.F. Borremans, M.S.J. Steyaert, and Willy Sansen. A 10bit 1-GSample/s nyquist current-steering CMOS D/A converter. IEEE Journal of Solid-State Circuits, 36(3):315–324, March 2001.
- [19] D. Baranauskas and D. Zelenin. A 0.36W 6b up to 20GS/s DAC for UWB wave formation. In Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, pages 2380–2389, 2006.
- [20] M. Khafaji, H. Gustat, and C. Scheytt. A 6 bit linear binary RF DAC in 0.25 um SiGe BiCMOS for communication systems. In Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International, pages 916–919, May 2010.
- [21] M. Nagatani, H. Nosaka, S. Yamanaka, K. Sano, and K. Murata. Ultrahigh-speed low-power DACs using InP HBTs for beyond-100-gb/s/ch optical transmission systems. IEEE Journal of Solid-State Circuits, 46(10):2215–2225, October 2011.
- [22] M. Nagatani, H. Nosaka, S. Yamanaka, K. Sano, and K. Murata. A 32-GS/s 6bit double-sampling DAC in InP HBT technology. In Annual IEEE Compound Semiconductor Integrated Circuit Symposium, 2009. CISC 2009, pages 1–4, October 2009.
- [23] M. Nagatani, H. Nosaka, K. Sano, K. Murata, K. Kurishima, and M. Ida. A 60-GS/s 6-bit DAC in 0.5-im InP HBT technology for optical communications systems. In 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pages 1–4, 2011.
- [24] Fujitsu. Factsheet: LEIA - 55-65GSa/s 8-bit DAC. Available at: http://www. fujitsu.com/downloads/MICRO/fme/documentation/c60.pdf.
- [25] T.O. Dickson, R. Beerkens, and S.P. Voinigescu. A 2.5-v 45-gb/s decision circuit using SiGe BiCMOS logic. IEEE Journal of Solid-State Circuits, 40(4):994–1003, April 2005.
- [26] Ekaterina. Laskin. Master thesis: On-chip self-test circuit blocks for high-speed applications. 2006.
- [27] Sorin Voinigescu. High-Frequency Integrated Circuits. Cambridge University Press, Cambridge ; New York, May 2013.
- [28] W. Fang. Accurate analytical delay expressions for ECL and CML circuits and their applications to optimizing high-speed bipolar circuits. IEEE Journal of Solid-State Circuits, 25(2):572–583, 1990.
- [29] Eduard Sckinger. Broadband Circuits for Optical Fiber Communication. WileyInterscience, Hoboken, N.J, 1 edition edition, March 2005.
- [30] Safa Kasap. Principles of Electronic Materials and Devices. McGraw-Hill Science/Engineering/Math, Boston, 3 edition edition, March 2005.
- [31] T. Suzuki, T. Takahashi, Tatsuya Hirose, and Masahiko Takikawa. A 80-gbit/s d-type flip-flop circuit using InP HEMT technology. IEEE Journal of Solid-State Circuits, 39(10):1706–1711, October 2004.
- [32] A Hart and S.P. Voinigescu. A 1 GHz bandwidth low-pass ADC with 20-50 GHz adjustable sampling rate. IEEE Journal of Solid-State Circuits, 44(5):1401–1414, May 2009.
- [33] S. Shahramian, A.C. Carusone, P. Schvan, and S.P. Voinigescu. An 81Gb/s, 1.2V TIALA-Retimer in standard 65nm CMOS. In IEEE Compound Semiconductor Integrated Circuits Symposium, 2008. CSIC ’08, pages 1–4, 2008.
- [34] V. Kozlov, P. Park, and S.P. Voinigescu. 4 x 24 gb/s 27 -1 prbs generator using 1.8 v mos-hbt quasi-cml logic. In 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pages 1–4, September 2012.
- [35] I Sarkas and S.P. Voinigescu. A 1.8 v SiGe BiCMOS cable equalizer with 40-dB peaking control up to 60 GHz. In 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pages 1–4, October 2012.
- [36] Yingying Fu and S.P. Voinigescu. A 108-GHz retimer based on 1.8v QUASI-ECL MOS-HBT SiGe BiCMOS logic. In 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pages 1–4, October 2013.
- [37] G. Avenier, M. Diop, P. Chevalier, G. Troillard, N. Loubet, J. Bouvier, L. Depoyan, N. Derrier, M. Buczko, C. Leyris, S. Boret, S. Montusclat, A Margain, S. Pruvost, S.T. Nicolson, K. H K Yau, N. Revil, D. Gloria, D. Dutartre, S.P. Voinigescu, and A Chantre. 0.13 m SiGe BiCMOS technology fully dedicated to mm-wave applications. IEEE Journal of Solid-State Circuits, 44(9):2312–2321, September 2009.
- [38] T.O. Dickson, E. Laskin, I Khalid, R. Beerkens, Jingqiong Xie, B. Karajica, and S.P. Voinigescu. An 80-gb/s 231-1 pseudorandom binary sequence generator in SiGe BiCMOS technology. IEEE Journal of Solid-State Circuits, 40(12):2735–2745, December 2005.
- [39] M. Meghelli. 132-gb/s 4:1 multiplexer in 0.13- mu;m SiGe-bipolar technology. IEEE Journal of Solid-State Circuits, 39(12):2403–2407, December 2004.
- [40] S.P. Voinigescu. The design of sige bicmos digital circuits for 100 gbaud wireline and fiberoptics communication systems. In 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) short course, September 2014.
- [41] A. Van Den Bosch, M. Steyaert, and W. Sansen. SFDR-bandwidth limitations for high speed high resolution current steering CMOS D/A converters. In The 6th IEEE International Conference on Electronics, Circuits and Systems, 1999. Proceedings of ICECS ’99, volume 3, pages 1193–1196 vol.3, 1999.
- [42] M. Nagatani, H. Nosaka, S. Yamanaka, K. Sano, and K. Murata. Ultrahigh-speed low-power DACs using InP HBTs for beyond-100-gb/s/ch optical transmission systems. IEEE Journal of Solid-State Circuits, 46(10):2215–2225, October 2011.
- [43] M. Nagatani, H. Nosaka, S. Yamanaka, K. Sano, and K. Murata. Ultrahigh-speed low-power DACs using InP HBTs for beyond-100-gb/s/ch optical transmission systems. IEEE Journal of Solid-State Circuits, 46(10):2215–2225, October 2011.
- [44] J. Deveugele, G. Van der Plas, M. Steyaert, G. Gielen, and Willy Sansen. A gradienterror and edge-effect tolerant switching scheme for a high-accuracy DAC. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(1):191–195, 2004.
- [45] W. Cheng, W. Ali, Moon-Jung Choi, K. Liu, T. Tat, D. Devendorf, L. Linder, and R. Stevens. A 3b 40GS/s ADC-DAC in 0.12 mu;m SiGe. In Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International, pages 262–263 Vol.1, 2004.
- [46] P. Schvan, D. Pollex, and T. Bellingrath. A 22GS/s 6b DAC with integrated digital ramp generator. In Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International, pages 122–588 Vol. 1, 2005.
- [47] J.I. Jamp, Junxiong Deng, and L.E. Larson. A 10GS/s 5-bit ultra-low power DAC for spectral encoded ultra-wideband transmitters. In 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pages 31–34, June 2007.
- [48] S. Haider and H. Gustat. A 30 GS/s 4-bit binary weighted DAC in SiGe BiCMOS technology. In IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2007. BCTM ’07, pages 46–49, September 2007.
- [49] M. Khafaji, H. Gustat, and C. Scheytt. A 6 bit linear binary RF DAC in 0.25um SiGe BiCMOS for communication systems. In Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International, pages 916–919, May 2010.
- [50] A.H. Gnauck, P.J. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, G. Charlet, B. Zhu, and D.W. Peckham. Generation and transmission of 21.4-gbaud PDM 64-QAM using a novel high-power DAC driving a single I/Q modulator. Journal of Lightwave Technology, 30(4):532–536, February 2012.
- [51] M. Nagatani, H. Nosaka, K. Sano, K. Murata, K. Kurishima, and M. Ida. A 60-GS/s 6-bit DAC in 0.5-im InP HBT technology for optical communications systems. In 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pages 1–4, October 2011.